Archivo por meses: enero 2019

Dando sentido del tacto a los robots

La tecnología GelSight permite a los robots medir la dureza de los objetos y manipular herramientas pequeñas

Hace ocho años, el grupo de investigación de Ted Adelson en el Laboratorio de Ciencias de la Computación e Inteligencia Artificial (CSAIL) de MIT reveló una nueva tecnología de sensores, llamada GelSight, que utiliza el contacto físico con un objeto para proporcionar un mapa tridimensional notablemente detallado de su superficie.

Ahora, al montar sensores GelSight en las pinzas de los brazos robóticos, dos equipos del MIT le han dado a los robots una mayor sensibilidad y destreza. Los investigadores presentaron su trabajo en dos artículos en la Conferencia Internacional sobre Robótica y Automatización.

En un artículo, el grupo de Adelson usa los datos del sensor GelSight para permitir que un robot juzgue la dureza de las superficies que toca, una habilidad crucial si los robots domésticos deben manejar objetos cotidianos.

En el otro, Robot Locomotion Group de Russ Tedrake en CSAIL utiliza sensores GelSight para permitir que un robot manipule objetos más pequeños de lo que era posible antes.

El sensor GelSight es, de alguna manera, una solución de baja tecnología para un problema difícil. Consiste en un bloque de elastómero transparente, el «gel» en el nombre de sensor, una cara del cual está recubierta con pintura metálica. Cuando la cara cubierta de pintura se presiona contra un objeto, se ajusta a la forma del objeto.

La pintura metálica hace que la superficie del objeto sea reflectiva, por lo que su geometría se vuelve mucho más fácil de inferir para los algoritmos de visión de computadora. Montados en el sensor opuesto a la cara recubierta de pintura del bloque elástico, hay tres luces de colores y una sola cámara.

«[El sistema] tiene luces de colores en diferentes ángulos, y luego tiene este material reflectivo, y al mirar los colores, la computadora … puede descubrir la forma 3D y qué es esa cosa», explica Adelson, profesora de Ciencias de la Visión en el Departamento de Cerebro y Ciencias Cognitivas.

En ambos conjuntos de experimentos, se montó un sensor GelSight en un lado de una pinza robótica, un dispositivo parecido a la cabeza de una pinza pero con superficies de agarre planas en lugar de puntas puntiagudas.

Puntos de contacto

Para un robot autónomo, medir la suavidad o dureza de los objetos es esencial para decidir no solo dónde y qué tan difícil es agarrarlos, sino también cómo se comportarán cuando los mueva, apile o coloque en diferentes superficies. La detección táctil también podría ayudar a los robots a distinguir objetos que se ven parecidos.

En trabajos anteriores, los robots han intentado evaluar la dureza de los objetos colocándolos sobre una superficie plana y empujándolos suavemente para ver cuánto dan. Pero esta no es la principal forma en que los humanos miden la dureza. Más bien, nuestros juicios parecen basarse en el grado en que el área de contacto entre el objeto y nuestros dedos cambia a medida que lo presionamos. Los objetos más blandos tienden a aplanarse más, aumentando el área de contacto.

Los investigadores del MIT adoptaron el mismo criterio. Wenzhen Yuan, una estudiante graduada en ingeniería mecánica y primera autora del artículo del grupo de Adelson, usó moldes de confitería para crear 400 grupos de objetos de silicona, con 16 objetos por grupo. En cada grupo, los objetos tenían las mismas formas pero diferentes grados de dureza, que Yuan medía usando un instrumento industrial estándar.

Ella luego presionó un sensor GelSight contra cada objeto manualmente, y registró cómo iba cambiando el patrón de contacto, en esencia produciendo una corta película para cada objeto. Para estandarizar el formato de los datos y mantener el tamaño de los datos manejable, extrajo cinco cuadros de cada película, espaciados uniformemente en el tiempo, lo que describe la deformación del objeto que se presionó.

Finalmente, alimentó los datos a una red neuronal, que buscaba automáticamente las correlaciones entre los cambios en los patrones de contacto y las mediciones de dureza. El sistema resultante toma cuadros de video como entradas y produce un puntaje de dureza con una precisión muy alta. Yuan también realizó una serie de experimentos informales en los que sujetos humanos palparon frutas y verduras y los clasificaron según su dureza. En todos los casos, el robot equipado con GelSight llegó a las mismas conclusiones.

A Yuan se le unieron en el documento sus dos asesores de tesis, Adelson y Mandayam Srinivasan, investigador científico senior en el Departamento de Ingeniería Mecánica; Chenzhuo Zhu, estudiante de la Universidad de Tsinghua que visitó el grupo de Adelson el verano pasado; y Andrew Owens, quien realizó su doctorado en ingeniería eléctrica y ciencias de la computación en el MIT y ahora es postdoctorado en la Universidad de California en Berkeley.

Visión obstruida

El documento de Robot Locomotion Group nació de la experiencia del grupo con el Desafío de Robótica (DRC) de la Agencia de Proyectos de Investigación Avanzada de la Defensa, en el que equipos académicos y de la industria compitieron para desarrollar sistemas de control que guiarían a un robot humanoide a través de una serie de tareas relacionadas con una emergencia hipotética.

Normalmente, un robot autónomo utiliza algún tipo de sistema de visión por computadora para guiar su manipulación de objetos en su entorno. Dichos sistemas pueden proporcionar información muy confiable sobre la ubicación de un objeto, hasta que el robot recoge el objeto. Especialmente si el objeto es pequeño, gran parte de él será ocluido por la pinza del robot, lo que hace que la estimación de la ubicación sea mucho más difícil. Por lo tanto, exactamente en el punto en el que el robot necesita conocer la ubicación del objeto con precisión, su estimación se vuelve poco confiable. Este fue el problema al que se enfrentó el equipo de MIT durante el DRC, cuando su robot tuvo que levantar y encender un taladro eléctrico.




«Puedes ver en nuestro video para el DRC que pasamos dos o tres minutos encendiendo el taladro», dice Greg Izatt, un estudiante graduado en ingeniería eléctrica y ciencias de la computación y primer autor del nuevo artículo. «Sería mucho mejor si tuviéramos una estimación precisa y actualizada de dónde se realizó ese ejercicio y dónde estaban nuestras manos en relación con él».

Es por eso que Robot Locomotion Group se dirigió a GelSight. Izatt y sus coautores: Tedrake, el profesor de ingeniería eléctrica y ciencias de la computación de Toyota, aeronáutica y astronáutica, e ingeniería mecánica; Adelson; y Geronimo Mirano, otro estudiante graduado en el grupo de Tedrake, que diseñaron algoritmos de control que utilizan un sistema de visión computarizada para guiar la pinza del robot hacia una herramienta y luego pasar la estimación de la ubicación a un sensor GelSight una vez que el robot tiene la herramienta en mano.

En general, el desafío con este enfoque es reconciliar los datos producidos por un sistema de visión con los datos producidos por un sensor táctil. Pero GelSight se basa en una cámara, por lo que su salida de datos es mucho más fácil de integrar con datos visuales que los datos de otros sensores táctiles.

En los experimentos de Izatt, un robot con una pinza equipada con GelSight tuvo que agarrar un destornillador pequeño, sacarlo de una funda y volverlo a su lugar. Por supuesto, los datos del sensor GelSight no describen el destornillador completo, solo una pequeña parte de él. Pero Izatt descubrió que, mientras la estimación del sistema de visión de la posición inicial del destornillador era precisa en unos pocos centímetros, sus algoritmos podrían deducir qué parte del destornillador estaba tocando el sensor GelSight y así determinar la posición del destornillador en la mano del robot.

«Creo que la tecnología GelSight, así como otros sensores táctiles de gran ancho de banda, tendrán un gran impacto en la robótica», dice Sergey Levine, profesor asistente de ingeniería eléctrica y ciencias de la computación en la Universidad de California en Berkeley. “Para los seres humanos, nuestro sentido del tacto es uno de los factores clave en nuestra sorprendente destreza manual. Los robots actuales carecen de este tipo de destreza y tienen una capacidad limitada para reaccionar a las características de la superficie cuando manipulan objetos. Si se imagina buscar un interruptor de luz en la oscuridad, extraer un objeto de su bolsillo o cualquiera de las otras muchas cosas que puede hacer sin siquiera pensar, todo se basa en la detección táctil.»

«El software finalmente está alcanzando las capacidades de nuestros sensores», agrega Levine. “Los algoritmos de aprendizaje automático inspirados por las innovaciones en el aprendizaje profundo, y la visión por computadora puede procesar los ricos datos sensoriales de sensores como GelSight para deducir las propiedades de los objetos. En el futuro, veremos este tipo de métodos de aprendizaje incorporados en el entrenamiento de las habilidades de manipulación de inicio a final, que hará que nuestros robots sean más diestros y capaces, y tal vez nos ayuden a comprender algo sobre nuestro propio sentido del tacto y control motor».

Artículos relacionados:

FlexShapeGripper: el agarre de la lengua de un camaleón


Usando electricidad y agua, un nuevo tipo de motor puede poner microrobots en movimiento

Los actuadores microhidráulicos, más delgados que un tercio del ancho del cabello humano, están demostrando ser los motores más potentes y eficientes a microescala.

Mire a su alrededor y probablemente verá algo que funciona con un motor eléctrico. Potentes y eficientes, mantienen gran parte de nuestro mundo en movimiento, desde nuestras computadoras hasta refrigeradores y ventanas automáticas en nuestros autos. Pero estas cualidades se hacen difíciles cuando estos motores se reducen a tamaños más pequeños que un centímetro cúbico.

«A escalas muy pequeñas, se obtiene un calentador en lugar de un motor», dijo Jakub Kedzierski, personal del Grupo de Tecnologías de Química, Microsistema y Nanoescala del Laboratorio Lincoln del MIT. Hoy en día, no existe ningún motor que sea altamente eficiente y poderoso a la vez que microscópico. Y eso es un problema, porque los motores a esa escala son necesarios para poner en movimiento los sistemas miniaturizados: micro guías que pueden apuntar los láseres con una fracción de un grado a lo largo de miles de kilómetros, drones diminutos que pueden meterse entre escombros para encontrar sobrevivientes, o incluso bots que pueden arrastrarse por el tracto digestivo humano.

Para ayudar a sistemas de energía como estos, Kedzierski y su equipo están creando un nuevo tipo de motor llamado actuador microhidráulico. Los actuadores se mueven con un nivel de precisión, eficiencia y potencia que aún no ha sido posible a microescala. Un artículo que describe este trabajo fue publicado en Science Robotics.

Los actuadores microhidráulicos utilizan una técnica llamada electrohumectación para lograr el movimiento. El electrohumectado aplica una tensión eléctrica a las gotas de agua sobre una superficie sólida para distorsionar la tensión superficial del líquido. Los actuadores aprovechan esta distorsión para forzar a las gotas de agua dentro del actuador a moverse, y con ellas, a todo el actuador.

«Piensa en una gota de agua en una ventana; la fuerza de la gravedad la distorsiona y se mueve hacia abajo», dijo Kedzierski. «Aquí, usamos voltaje para causar la distorsión, que a su vez produce movimiento».

El actuador está construido en dos capas. La capa inferior es una lámina de metal con electrodos estampados en ella. Esta capa está cubierta con un dieléctrico, un aislante que se polariza cuando se aplica un campo eléctrico. La capa superior es una lámina de polyimida, un plástico fuerte, que tiene perforados canales poco profundos. Los canales guían la trayectoria de docenas de gotas de agua que se aplican entre las dos capas y se alinean con los electrodos. Para evitar la evaporación, el agua se mezcla antes con una solución de cloruro de litio, que reduce la presión de vapor del agua lo suficiente como para que las gotas del tamaño de un micrómetro duren meses. Las gotas mantienen su forma redondeada (en lugar de ser aplastadas entre las capas) debido a su tensión superficial y su tamaño relativamente pequeño.

El actuador cobra vida cuando se aplica voltaje a los electrodos, aunque no a todos a la vez. Se realiza en un ciclo de activación de dos electrodos por gota a la vez. Sin voltaje, una sola gota de agua descansa neutralmente en dos electrodos, 1 y 2. Pero al aplicar un voltaje a los electrodos 2 y 3, de repente la gota se deforma, estirándose para tocar el electrodo energizado 3 y se retira del electrodo 1.

Esta fuerza horizontal en una gota no es suficiente para mover el actuador. Pero con este ciclo de voltaje aplicado simultáneamente a los electrodos debajo de cada gota en la matriz, la capa de polyimida completa se desliza para apaciguar la atracción de las gotas hacia los electrodos energizados. Al continuar haciendo circular el voltaje, las gotitas siguen caminando sobre los electrodos y la capa continúa deslizándose; si se corta la tensión, y el actuador se detiene en sus pistas. El voltaje, entonces, se convierte en una herramienta poderosa para controlar con precisión el movimiento del actuador.

Pero, ¿cómo queda el actuador frente a otros tipos de motores? Las dos métricas para medir el rendimiento son la densidad de potencia, o la cantidad de potencia que produce el motor en relación con su peso y eficiencia, o la medida de la energía desperdiciada. Uno de los mejores motores eléctricos en términos de eficiencia y densidad de potencia es el motor del sedán Tesla Modelo S. Cuando el equipo probó los actuadores microhidráulicos, descubrieron que estaban justo detrás de la densidad de potencia del Modelo S (a 0,93 kilovatios por kilogramo) y el rendimiento de eficiencia (con una eficiencia del 60 por ciento a la densidad de potencia máxima). Superaron ampliamente los actuadores piezoeléctricos y otros tipos de microactuadores.

«Estamos entusiasmados porque estamos cumpliendo con ese punto de referencia, y aún estamos mejorando a medida que escalamos a tamaños más pequeños», dijo Kedzierski. Los actuadores mejoran en tamaños más pequeños porque la tensión de la superficie sigue siendo la misma independientemente del tamaño de las gotas de agua, y las gotas más pequeñas dejan espacio para que aun más gotas entren en el actuador y ejerzan su fuerza horizontal. «La densidad de potencia simplemente se dispara. Es como tener una cuerda cuya fuerza no se debilita a medida que se adelgaza», agregó.

El último actuador, el que está más cerca del modelo S de Tesla, tenía una separación de 48 micrómetros entre las gotas. El equipo ahora está reduciendo eso a 30 micrómetros. Proyectan que, a esa escala, el actuador coincidirá con el Tesla en densidad de potencia y, a 15 micrómetros, lo superará.

La reducción de los actuadores es solo una parte de la ecuación. El otro aspecto en el que el equipo está trabajando activamente es la integración 3D. En este momento, un solo actuador es un sistema de dos capas, más delgado que una bolsa de plástico y flexible como ella, también. Quieren apilar los actuadores en un sistema similar a un andamio que pueda moverse en tres dimensiones.

Kedzierski imagina un sistema semejante que imita la matriz muscular de nuestro cuerpo, la red de tejidos que permite a nuestros músculos lograr un movimiento instantáneo, potente y flexible. Diez veces más potentes que el músculo, los actuadores se inspiraron en los músculos de muchas maneras, desde su flexibilidad y ligereza hasta su composición de componentes sólidos y fluidos.

Y así como el músculo es un excelente actuador en la escala de una hormiga o un elefante, estos actuadores microhidráulicos también podrían tener un impacto poderoso no solo a microescala, sino en la macroescala.

«Uno podría imaginar», dijo Eric Holihan, quien ha estado ensamblando y probando los actuadores, «la tecnología aplicada a los exoesqueletos», construida con los actuadores como un músculo real, configurado en juntas flexibles en lugar de engranajes. O un ala de avión podría cambiar de forma con comandos eléctricos, con miles de actuadores deslizándose uno sobre el otro para cambiar la forma aerodinámica del ala.

Mientras sus imaginaciones se agitan, el equipo enfrenta desafíos en el desarrollo de grandes sistemas de actuadores. Un desafío es cómo distribuir la potencia en ese volumen. Un esfuerzo paralelo en el laboratorio, que está desarrollando microbaterías para integrarse con los actuadores, podría ayudar a resolver ese problema. Otro desafío es cómo empaquetar los actuadores para eliminar la evaporación.

«La confiabilidad y el empaque continuarán siendo las preguntas predominantes que se nos plantean sobre esta tecnología hasta que demostremos una solución», dijo Holihan. «Esto es algo que esperamos atacar frontalmente en los próximos meses».

Fuente: MIT NEWS




Novedades sobre App Inventor y Play Store

Google lanzó recientemente una nueva política de Play Store que afectará a algunas aplicaciones de App Inventor.

Todas las aplicaciones que utilizan el componente de mensajes de texto o llamada telefónica y se publican en Play Store deben reconstruirse. El equipo de MIT App Inventor está realizando un cambio en PhoneCall y Texting para ayudar a nuestros usuarios a lidiar con esta política de Google.

¿Cómo afectará esto a mis aplicaciones de App Inventor y qué debo hacer?

Con el cambio de Google, si crea una aplicación App Inventor que utiliza componentes de teléfono o mensajes de texto, no podrá enviarla a Google Play.

El equipo de MIT App Inventor está cambiando los componentes de Texting y PhoneCall para que las aplicaciones recién creadas cumplan con las restricciones de Google y puedan enviarse a Play como antes. Actualmente estamos probando los cambios y los lanzaremos en App Inventor pronto, en febrero de 2019.

Google también planea eliminar de Play las aplicaciones que violan su política. Si eso te sucede, deberás esperar el cambio a App Inventor, y luego reconstruir tu aplicación y volver a enviarla a Play.

¿Cuál es el cambio de política de Google Play Store?

El cambio de Google es que ya no permitirán aplicaciones en Play Store que envían directamente mensajes de texto (SMS) o hacen llamadas telefónicas. En su lugar, debe invocar la aplicación integrada de mensajes de texto (o llamada telefónica) del dispositivo. Por ejemplo, ya no será aceptada en Play Store una aplicación que envíe periódicamente mensajes de texto sin notificar al usuario del teléfono, y Google también puede eliminar las aplicaciones que se encuentran actualmente en Play Store. Google también ha creado un proceso en el que los desarrolladores pueden completar un formulario solicitando que se permita su aplicación como una excepción a la política.

Busque aquí la información que Google ha proporcionado:

https://support.google.com/googleplay/android-developer/answer/9047303

¿Se comportarán mis aplicaciones de manera diferente después de que se cambie App Inventor?

Sí, habrá un cambio. Cuando use Texting.SendMessage, el teléfono ahora dirigirá el mensaje a la aplicación normal de envío de mensajes de texto del teléfono. Del mismo modo para Phone.MakePhoneCall.

¿Puedo seguir utilizando App Inventor para crear aplicaciones que violen la política de Google para Play?

Sí.

El cambio de MIT a App Inventor incluirá versiones alternativas de Texting.SendMessage y Phone.MakePhoneCall que envían directamente mensajes de texto y hacen llamadas telefónicas. Puede crear aplicaciones con estas versiones alternativas y compartirlas con sus amigos y familiares. Pero necesitaría pedirle a Google una excepción de política para publicar esas aplicaciones en Play Store.

El MIT publicá un aviso cuando estas funciones estén en la página de App Inventor.

Más información sobre posibilidades de desarrollo con App Inventor