Archivo por meses: febrero 2019

Una prótesis que restaura la sensación de dónde está tu mano

Los investigadores han desarrollado una mano biónica de nueva generación que permite a los amputados recuperar su propiocepción. Los resultados del estudio son la culminación de diez años de investigación en robótica.

El nuevo dispositivo permite a los pacientes alcanzar un objeto en una mesa y determinar la consistencia, la forma, la posición y el tamaño de un elemento sin tener que mirarlo.

La mano biónica de la próxima generación, desarrollada por investigadores de la EPFL, la Escuela de Estudios Avanzados Sant’Anna en Pisa y el Policlínico Universitario A. Gemelli en Roma, permite a los amputados recuperar un sentido del tacto muy sutil y casi natural. Los científicos lograron reproducir la sensación de propiocepción, que es la capacidad de nuestro cerebro para detectar al instante y con precisión la posición de nuestros miembros durante y después del movimiento, incluso en la oscuridad o con los ojos cerrados.

El nuevo dispositivo permite a los pacientes alcanzar un objeto en una mesa y determinar la consistencia, la forma, la posición y el tamaño de un elemento sin tener que mirarlo. La prótesis ha sido probada con éxito en varios pacientes y funciona estimulando los nervios en el muñón del amputado. Los nervios pueden proporcionar retroalimentación sensorial a los pacientes en tiempo real, casi como lo hacen en una mano natural.

Los hallazgos han sido publicados en la revista Science Robotics. Son el resultado de diez años de investigación científica coordinada por Silvestro Micera, profesor de bioingeniería en la EPFL y en la Escuela de Estudios Avanzados Sant’Anna, y Paolo Maria Rossini, director de neurociencia del Policlínico Universitario A. Gemelli en Roma.

Retroalimentación sensorial

Las prótesis mioeléctricas actuales permiten a los amputados recuperar el control motor voluntario de su extremidad artificial mediante la explotación de la función muscular residual en el antebrazo. Sin embargo, la falta de retroalimentación sensorial significa que los pacientes tienen que confiar mucho en las señales visuales. Esto puede evitar que sientan que su extremidad artificial es parte de su cuerpo y causa que su uso sea más antinatural.

Recientemente, varios grupos de investigación han logrado proporcionar retroalimentación táctil en personas con amputaciones, lo que ha llevado a una mejor función y realización de prótesis. Pero este último estudio ha llevado las cosas un paso más allá.

«Nuestro estudio muestra que la sustitución sensorial basada en la estimulación intraneural puede ofrecer tanto la retroalimentación de posición como la retroalimentación táctil de manera simultánea y en tiempo real», explica Micera. «El cerebro no tiene problemas para combinar esta información, y los pacientes pueden procesar ambos tipos en tiempo real con excelentes resultados».

La estimulación intraneural restablece el flujo de información externa mediante pulsos eléctricos enviados por electrodos insertados directamente en el muñón del paciente. Luego, los pacientes deben someterse a entrenamiento para aprender gradualmente a traducir esos pulsos en sensaciones propioceptivas y táctiles.

Esta técnica permitió a dos amputados recuperar una agudeza propioceptiva alta, con resultados comparables a los obtenidos en sujetos sanos. La entrega simultánea de información de posición y la retroalimentación táctil permitieron a los dos amputados determinar el tamaño y la forma de cuatro objetos con un alto nivel de precisión (75,5%).

«Estos resultados muestran que los amputados pueden procesar de manera efectiva la información táctil y de posición recibida simultáneamente a través de la estimulación intraneural», dice Edoardo D’Anna, investigador de EPFL y autor principal del estudio.

Fuente de la historia: Materiales proporcionados por Ecole Polytechnique Fédérale de Lausanne.

Referencia de publicación:

Edoardo D’Anna, Giacomo Valle, Alberto Mazzoni, Ivo Strauss, Francesco Iberite, Jérémy Patton, Francesco M. Petrini, Stanisa Raspopovic, Giuseppe Granata, Riccardo Di Iorio, Marco Controzzi, Christian Cipriani, Thomas Stieglitz, Paolo M. Rossini, Silvestro Micera. A closed-loop hand prosthesis with simultaneous intraneural tactile and position feedback (Una prótesis de mano de circuito cerrado con tacto intraneural simultáneo y retroalimentación de posición). Science Robotics, 2019; 4 (27): eaau8892 DOI: 10.1126/scirobotics.aau8892



Dando a los vehículos autónomos una «visión eléctrica» más aguda

El sistema en un chip capaz de detectar las señales en longitudes de onda sub-terahercios podría ayudar a conducir los vehículos sin conductor a través de la niebla y el polvo.

Los vehículos autónomos que dependen de sensores de imagen basados en la luz a menudo tienen dificultades para ver a través de algo que obstruye la visión, como la niebla. Pero los investigadores del MIT han desarrollado un sistema de recepción de radiación sub-terahercios que podría ayudar a conducir automóviles sin conductor cuando los métodos tradicionales fallan.

Las longitudes de onda de sub-terahercios, que se encuentran entre la radiación de microondas e infrarroja en el espectro electromagnético, se pueden detectar fácilmente a través de la niebla y las nubes de polvo, mientras que los sistemas de imágenes LiDAR basados en infrarrojos utilizados en vehículos autónomos tienen dificultades. Para detectar objetos, un sistema de imágenes basado en sub-terahercios envía una señal inicial a través de un transmisor; un receptor mide la absorción y reflexión de las longitudes de onda de los sub-terahercios del rebote. Eso envía una señal a un procesador que recrea una imagen del objeto.

Pero la implementación de sensores sub-terahertcios en autos sin conductor es un desafío. Un reconocimiento de objetos sensible y preciso requiere una fuerte señal de salida del receptor al procesador. Los sistemas tradicionales, hechos de componentes discretos que producen esas señales, son grandes y costosos. Existen matrices más pequeñas de sensores en chip, pero producen señales débiles.

En un artículo publicado en línea por el IEEE Journal of Solid-State Circuits, los investigadores describen una matriz bidireccional de recepción sub-terahercios en un chip que es mucho más sensible, lo que significa que puede capturar e interpretar mejor las longitudes de onda de sub-terahercios en presencia de mucho ruido de señal.

Para lograr esto, implementaron un esquema de píxeles a partir de una mezcla de señales independientes, llamados «detectores heterodinos», que generalmente son muy difíciles de integrar en chips. Los investigadores redujeron drásticamente el tamaño de los detectores heterodinos para que muchos de ellos puedan encajar en un denso chip. El truco consistió en crear un componente multipropósito compacto que pueda mezclar simultáneamente señales de entrada, sincronizar la matriz de píxeles y producir fuertes señales de banda base de salida.

Los investigadores construyeron un prototipo, que tiene una matriz de 32 píxeles integrada en un dispositivo de 1,2 milímetros cuadrados. Los píxeles son aproximadamente 4.300 veces más sensibles que los píxeles en los sensores de matriz de sub-terahercios de hoy en día en chips. Con un poco más de desarrollo, es posible que el chip se pueda usar en autos sin conductor y robots autónomos.

«Una gran motivación para este trabajo es tener mejores ‘ojos eléctricos’ para vehículos autónomos y drones», dice el coautor Ruonan Han, profesor asociado de ingeniería eléctrica y ciencias de la computación, y director del Grupo de Electrónica Integrada Terahertz en el Microsystems Technology Laboratories (MTL) del MIT. «Nuestros sensores de sub-terahercios de bajo costo y en chip jugarán un papel complementario al LiDAR para cuando el entorno sea peligroso».

Junto a Han en la publicación, se encuentran el primer autor Zhi Hu y el coautor Cheng Wang, ambos estudiantes de doctorado en el Departamento de Ingeniería Eléctrica y Ciencias de la Computación que trabajan en el grupo de investigación de Han.

Diseño descentralizado

La clave del diseño es lo que los investigadores denominan «descentralización». En este diseño, un píxel único, denominado píxel «heterodino», genera el ritmo de la frecuencia (la diferencia de frecuencia entre dos señales de sub-terahercios entrantes) y la «oscilación local», una señal eléctrica que cambia la frecuencia de una frecuencia de entrada. Este proceso de «mezcla descendente» produce una señal en el rango de megahercios que puede ser fácilmente interpretada por un procesador de banda base.

La señal de salida se puede usar para calcular la distancia de los objetos, de manera similar a como un LiDAR calcula el tiempo que tarda un láser en impactar un objeto y rebotar. Además, la combinación de las señales de salida de una matriz de píxeles y la dirección de los píxeles en una cierta dirección puede permitir imágenes de alta resolución de una escena. Esto permite no solo la detección, sino también el reconocimiento de objetos, algo fundamental en vehículos autónomos y robots.

La colección de píxeles heterodinos funciona solo cuando las señales de oscilación locales de todos los píxeles están sincronizadas, lo que significa que se necesita una técnica de sincronización de señales. Los diseños centralizados incluyen un solo concentrador que comparte señales de oscilación locales con todos los píxeles.

Estos diseños generalmente se usan en receptores de frecuencias más bajas y pueden causar problemas en las bandas de frecuencia de sub-terahercios, donde la generación de una señal de alta potencia desde un solo concentrador es notoriamente difícil. A medida que la matriz aumenta, la potencia compartida por cada píxel disminuye, lo que reduce la intensidad de la señal de banda base de salida, que depende en gran medida de la potencia de la señal de oscilación local. Como resultado, una señal generada por cada píxel puede ser muy débil, lo que lleva a una baja sensibilidad. Se ha comenzado a usar algunos sensores en chip de este diseño, pero están limitados a ocho píxeles.

El diseño descentralizado de los investigadores aborda este compromiso de sensibilidad a la escala. Cada píxel genera su propia señal de oscilación local, utilizada para recibir y mezclar la señal entrante. Además, un acoplador integrado sincroniza su señal de oscilación local con la de su vecino. Esto le da a cada píxel más potencia de salida, ya que la señal de oscilación local no fluye desde un centro global.

Una buena analogía para el nuevo diseño descentralizado es un sistema de riego, dice Han. Un sistema de irrigación tradicional tiene una bomba que dirige un poderoso flujo de agua a través de una red de tuberías que distribuye agua a muchos sitios de rociadores. Cada aspersor escupe agua con un flujo mucho más débil que el flujo inicial de la bomba. Si se desea que los rociadores lancen agua a la misma frecuencia, eso requeriría otro sistema de control.

El diseño de los investigadores, por otro lado, le da a cada sitio su propia bomba de agua, eliminando la necesidad de conectar tuberías, y le da a cada aspersor su propia salida poderosa de agua. Cada aspersor también se comunica con su vecino para sincronizar sus pulsaciones. «Con nuestro diseño, esencialmente no hay límite para la escalabilidad», dice Han. «Puedes tener tantos sitios como quieras, y cada sitio aún bombea la misma cantidad de agua… y todas las bombas pulsan juntas».





Sin embargo, potencialmente, la nueva arquitectura hace que la huella de cada píxel sea mucho más grande, lo que plantea un gran desafío para la integración a gran escala y de alta densidad en forma de matriz. En su diseño, los investigadores combinaron varias funciones de cuatro componentes tradicionalmente separados (antena, mezclador, oscilador y acoplador) en un único componente de «multitarea» dedicado a cada píxel. Esto permite un diseño descentralizado de 32 píxeles.

«Diseñamos un componente multifuncional para un diseño [descentralizado] en un chip y combinamos algunas estructuras discretas para reducir el tamaño de cada píxel», dice Hu. «Aunque cada píxel realiza operaciones complicadas, mantiene su compacidad, por lo que aún podemos tener una matriz densa a gran escala».

Guiado por frecuencias

Para que el sistema pueda medir la distancia de un objeto, la frecuencia de la señal local de oscilación debe ser estable.

Con ese fin, los investigadores incorporaron en su chip un componente llamado bucle de bloqueo de fase, que bloquea la frecuencia de sub-terahercios de las 32 señales de oscilación local a una referencia estable de baja frecuencia. Debido a que los píxeles están acoplados, sus señales de oscilación locales comparten una fase y frecuencia idénticas y de alta estabilidad. Esto asegura que se pueda extraer información significativa de las señales de banda base de salida. Toda esta arquitectura minimiza la pérdida de señal y maximiza el control.

«En resumen, logramos una matriz coherente, al mismo tiempo con una potencia de oscilación local muy elevada en cada píxel, por lo que cada píxel alcanza una alta sensibilidad», dice Hu.



Logran que los robots rastreen objetos en movimiento con una precisión sin precedentes

El sistema usa etiquetas RFID para ubicarse en los objetivos. Podría beneficiar la fabricación robótica, drones colaborativos y otras aplicaciones.

Un nuevo sistema desarrollado en MIT utiliza etiquetas RFID para ayudar a los robots a localizar objetos en movimiento con una velocidad y precisión sin precedentes. El sistema podría permitir una mayor colaboración y precisión de los robots que trabajan en el empaquetado y el ensamblaje, y de enjambres de drones que realizan misiones de búsqueda y rescate.

En un documento que se presentará la próxima semana en el Simposio de USENIX sobre Diseño e Implementación de Sistemas en Red, los investigadores muestran que los robots que usan el sistema pueden ubicar objetos etiquetados en un promedio de 7,5 milisegundos, y con un error de menos de un centímetro.

En el sistema, llamado TurboTrack, se puede aplicar una etiqueta RFID (identificación por radiofrecuencia) a cualquier objeto. Un lector envía una señal inalámbrica que se refleja en la etiqueta RFID y otros objetos cercanos, y rebota en el lector. Un algoritmo revisa todas las señales reflejadas para encontrar la respuesta de la etiqueta RFID. Luego, los cálculos finales aprovechan el movimiento de la etiqueta RFID, algo que generalmente disminuye la precisión, para mejorar la precisión de la localización.

Los investigadores dicen que el sistema podría reemplazar la visión por computadora para algunas tareas robóticas. Al igual que con su contraparte humana, la visión de la computadora está limitada por lo que puede ver, y puede dejar de notar objetos en entornos desordenados. Las señales de radiofrecuencia no tienen estas restricciones: pueden identificar los objetivos sin visualización, dentro del desorden y a través de las paredes.

Para validar el sistema, los investigadores adjuntaron una etiqueta RFID a una tapa y otra a una botella. Un brazo robótico localizó la tapa y la colocó sobre la botella, sostenida por otro brazo robótico. En otra demostración, los investigadores rastrearon nanodrones equipados con RFID durante el acoplamiento, las maniobras y el vuelo. En ambas tareas, el sistema era tan preciso y rápido como los sistemas tradicionales de visión artificial, mientras trabajaban en escenarios donde falla la visión artificial, informan los investigadores.

“Si se usa señales de RF para tareas que normalmente se realizan con visión por computadora, no solo se habilita a los robots para que hagan cosas humanas, sino que también se puede hacer que hagan cosas sobrehumanas”, dice Fadel Adib, profesor asistente e investigador principal en el MIT Media Lab, y director fundador del Grupo de Investigación Signal Kinetics. «Y puede hacerlo de manera escalable, porque estas etiquetas RFID solo cuestan 3 centavos [de dólar] cada una».

En la fabricación, el sistema podría permitir que los brazos robóticos sean más precisos y versátiles en, digamos, recoger, ensamblar y empaquetar elementos a lo largo de una línea de ensamblaje. Otra aplicación prometedora es el uso de «nanodrones» de mano para misiones de búsqueda y rescate. Los nanodrones actualmente utilizan la visión por computadora y métodos para unir las imágenes capturadas con fines de localización. Estos drones a menudo se confunden en áreas caóticas, se pierden entre sí detrás de las paredes y no se pueden identificar de manera única. Todo esto limita su capacidad de, digamos, extenderse sobre un área y colaborar para buscar a una persona desaparecida. Usando el sistema de los investigadores, los nanodrones en enjambres podrían ubicarse mejor entre sí, para un mayor control y colaboración.

«Se puede permitir que un enjambre de nanodrones se forme de ciertas maneras, vuele en ambientes abarrotados, e incluso en entornos ocultos a la vista, con gran precisión», dice el primer autor Zhihong Luo, un estudiante graduado del Grupo de Investigación Signal Kinetics.

Los otros coautores del Media Lab en la publicación son el estudiante Qiping Zhang, el posdoctorado Yunfei Ma y el asistente de investigación Manish Singh.

Súper resolución

El grupo de Adib ha estado trabajando durante años en el uso de señales de radio para fines de seguimiento e identificación, como la detección de contaminación en los alimentos embotellados, la comunicación con los dispositivos internos del cuerpo, y la gestión de inventarios de almacenamientos.

Sistemas similares han intentado utilizar etiquetas RFID para tareas de localización. Pero estos vienen con compensaciones de precisión o velocidad. Para ser precisos, les puede llevar varios segundos encontrar un objeto en movimiento. Para aumentar la velocidad, pierden precisión.

El desafío fue lograr velocidad y precisión simultáneamente. Para hacerlo, los investigadores se inspiraron en una técnica de imagen llamada «imagen de súper resolución». Estos sistemas unen imágenes desde múltiples ángulos para lograr una imagen de resolución más fina.

«La idea era aplicar estos sistemas de súper resolución a las señales de radio», dice Adib. «A medida que algo se mueve, obtienes más perspectivas para rastrearlo, de modo que se puede explotar el movimiento para obtener precisión».

El sistema combina un lector RFID estándar con un componente «auxiliar» que se utiliza para localizar las señales de radiofrecuencia. El ayudante dispara una señal de banda ancha que comprende múltiples frecuencias, basándose en un esquema de modulación utilizado en la comunicación inalámbrica, llamado Multiplexación por división de frecuencias ortogonales.

El sistema captura todas las señales que rebotan contra objetos en el entorno, incluida la etiqueta RFID. Una de esas señales lleva una señal que es específica de una determinada etiqueta RFID, porque las señales RFID reflejan y absorben una señal entrante en un determinado patrón, correspondiente a bits 0 y 1, que el sistema puede reconocer.




Debido a que estas señales viajan a la velocidad de la luz, el sistema puede calcular un «tiempo de vuelo» (Time of Fly), que mide la distancia al calcular el tiempo que tarda una señal en viajar entre un transmisor y un receptor, para medir la ubicación de la etiqueta, así como los otros objetos en el entorno. Pero esto proporciona solo una figura de localización de estadio de béisbol, no una precisión menor a un centímetro.

Aprovechando el movimiento

Para ampliar la ubicación de la etiqueta, los investigadores desarrollaron lo que denominan un algoritmo de «súper resolución de espacio-tiempo».

El algoritmo combina las estimaciones de ubicación para todas las señales de rebote, incluida la señal RFID, que ha determinado usando el tiempo de vuelo. Usando algunos cálculos de probabilidad, reduce ese grupo a unas pocas ubicaciones potenciales para la etiqueta RFID.

A medida que la etiqueta se mueve, su ángulo de señal se altera ligeramente, un cambio que también corresponde a una determinada ubicación. El algoritmo puede usar ese cambio de ángulo para rastrear la distancia de la etiqueta a medida que se mueve. Al comparar constantemente el cambio de la medición de distancia con todas las demás mediciones de distancia de otras señales, puede encontrar la etiqueta en un espacio tridimensional. Todo esto sucede en una fracción de segundo.

«La gran idea es que, al combinar estas mediciones en el tiempo y en el espacio, se obtiene una mejor reconstrucción de la posición de la etiqueta», dice Adib.

«El trabajo informa sobre la precisión en el orden del sub-centímetro, que es muy impresionante para RFID», dice Lili Qiu, profesor de ciencias de la computación en la Universidad de Texas en Austin, cuya investigación se centra en las redes inalámbricas y las comunicaciones. «El documento propone una idea interesante que le permite a un «ayudante» transmitir una señal de banda ancha compatible con el protocolo RFID para lograr una alta precisión de seguimiento [y] desarrolla un […] marco para la localización de RF que fusiona las mediciones en el tiempo y en múltiples antenas. El sistema tiene potencial para admitir aplicaciones que son objetivo [de los investigadores], como ensamblaje robótico y nanodrones. … Sería muy interesante ver los resultados de las pruebas de campo en el futuro».

El trabajo fue patrocinado, en parte, por la Fundación Nacional de Ciencia.



LEDs conectados al revés podrían enfriar las computadoras del futuro

En un hallazgo que va en contra de un supuesto común en física, los investigadores de la Universidad de Michigan conectaron un diodo emisor de luz (LED) con sus electrodos invertidos para enfriar otro dispositivo a solo nanómetros de distancia.

El equipo de la UM modificó un fotodiodo infrarrojo del tamaño de un grano de arroz, que se muestra en esta imagen de microscopio electrónico. Alisaron su superficie para que pudieran colocarla cerca de un calorímetro hecho a medida, solo 55 nanómetros (0,000055 milímetros) entre ellos. Las mediciones del calorímetro mostraron que el fotodiodo, cuando se conecta con los electrodos invertidos, se comportaba como si estuviera a una temperatura más baja y enfriaba el calorímetro

El enfoque podría llevar a una nueva tecnología de refrigeración de estado sólido para microprocesadores futuros, que tendrá tantos transistores empaquetados en un espacio pequeño que los métodos actuales no pueden eliminar el calor lo suficientemente rápido.

«Hemos demostrado un segundo método para usar los fotones para enfriar los dispositivos», dijo Pramod Reddy, quien dirigió el trabajo junto con Edgar Meyhofer, ambos profesores de ingeniería mecánica.

El primero, conocido en el campo como el enfriamiento por láser, se basa en el trabajo fundacional de Arthur Ashkin, quien compartió el Premio Nobel de Física en 2018.

Los investigadores aprovecharon el potencial químico de la radiación térmica, un concepto que se usa más comúnmente para explicar, por ejemplo, cómo funciona una batería.

«Incluso hoy, muchos asumen que el potencial químico de la radiación es cero», dijo Meyhofer. «Pero el trabajo teórico que se remonta a la década de 1980 sugiere que bajo ciertas condiciones, este no es el caso».

El potencial químico en una batería, por ejemplo, impulsa una corriente eléctrica cuando se coloca en un dispositivo. Dentro de la batería, los iones metálicos quieren fluir al otro lado porque pueden deshacerse de parte de la energía (energía potencial química) y nosotros utilizamos esa energía como electricidad. La radiación electromagnética, incluida la luz visible y la radiación térmica infrarroja, por lo general no tiene este tipo de potencial.

«Por lo general, para la radiación térmica, la intensidad solo depende de la temperatura, pero en realidad tenemos un interruptor adicional para controlar esta radiación, lo que hace posible el enfriamiento que investigamos», dijo Linxiao Zhu, investigadora en ingeniería mecánica y autora principal del trabajo de investigación.

Ese interruptor es eléctrico. En teoría, revertir las conexiones eléctricas positivas y negativas en un LED infrarrojo no solo evitará que emita luz, sino que suprimirá la radiación térmica que debería estar produciendo, solo porque está a temperatura ambiente.

«El LED, con este truco de polarización inversa, se comporta como si estuviera a una temperatura más baja», dijo Reddy.

Sin embargo, medir este enfriamiento, y probar que algo interesante sucedió, es terriblemente complicado.

Para obtener suficiente luz infrarroja para que fluya desde un objeto al LED, los dos tendrían que estar muy juntos, menos que una sola longitud de onda de luz infrarroja. Esto es necesario para aprovechar los efectos de «campo cercano» o «acoplamiento evanescente», que permiten que más fotones infrarrojos, o partículas de luz, crucen desde el objeto para dentro del LED.

Reddy y el equipo de Meyhofer tenían una ventaja, porque ya habían estado calentando y enfriando dispositivos a nanoescala, organizándolos de modo que estuvieran separados solo por unas pocas decenas de nanómetros, o menos de una milésima del grosor de un cabello. En esta proximidad, un fotón que no habría escapado del objeto a enfriar puede pasar al LED, casi como si no existiera la brecha entre ellos. Y el equipo tuvo acceso a un laboratorio de vibraciones ultra bajas donde las mediciones de objetos separados por nanómetros se vuelven factibles porque las vibraciones, como las de alguien caminando en el edificio, se reducen drásticamente.

El grupo probó el principio construyendo un calorímetro minúsculo, que es un dispositivo que mide los cambios en la energía, y colocándolo junto a un pequeño LED del tamaño de un grano de arroz. Estos dos emitían y recibían fotones térmicos entre sí y de otras partes de sus entornos.

«Cualquier objeto que se encuentre a temperatura ambiente está emitiendo luz. Una cámara de visión nocturna, básicamente, está capturando la luz infrarroja que proviene de un cuerpo cálido», dijo Meyhofer.

Pero una vez que el LED fue polarizado en inversa, comenzó a actuar como un objeto de muy baja temperatura, absorbiendo fotones del calorímetro. Al mismo tiempo, la brecha evita que el calor vuelva al calorímetro por medio de conducción, lo que produce un efecto de enfriamiento.

El equipo demostró un enfriamiento de 6 vatios por metro cuadrado. Teóricamente, este efecto podría producir un enfriamiento equivalente a 1.000 vatios por metro cuadrado, o alrededor del poder de la luz solar sobre la superficie de la Tierra.




Esto podría llegar a ser importante para los futuros teléfonos inteligentes, y otras computadoras. Con más potencia de cálculo en dispositivos cada vez más pequeños, la eliminación del calor del microprocesador está comenzando a limitar la cantidad de energía que se puede comprimir en un espacio determinado.

Con las mejoras en la eficiencia y las velocidades de enfriamiento de este nuevo abordaje, el equipo prevé este fenómeno como una forma de quitar rápidamente el calor de los microprocesadores en los dispositivos. Incluso podría hacer frente a los maltratos sufridos por los teléfonos inteligentes, ya que los espaciadores a nanoescala podrían proporcionar el espacio entre el microprocesador y el LED.

La investigación se publicó en la revista Nature el 14 de febrero de 2019, titulada «Enfriamiento fotónico de campo cercano mediante el control del potencial químico de los fotones» («Near-field photonic cooling through control of the chemical potential of photons.»).

Esta investigación fue apoyada por el Departamento de Energía y la Oficina de Investigación del Ejército. Los dispositivos se fabricaron en la Instalación de Nanofabricación Lurie de la UM. Meyhofer también es profesor de ingeniería biomédica. Reddy también es profesor de ciencia de materiales e ingeniería.

Fuente de la historia:

Materiales proporcionados por la Universidad de Michigan.

Referencia de la publicación:

Linxiao Zhu, Anthony Fiorino, Dakotah Thompson, Rohith Mittapally, Edgar Meyhofer y Pramod Reddy. Near-field photonic cooling through control of the chemical potential of photons. Nature, 2019 DOI: 10.1038/s41586-019-0918-8

Universidad de Michigan. ScienceDaily, febrero de 2019. www.sciencedaily.com/releases/2019/02/190213132326.htm.


Un robot que procura moverse tan bien como una hormiga

Los insectos en general son infaliblemente impresionantes por lo inteligentes y capaces que son, con un mínimo absoluto de detección y poder de cómputo. Cuando las cosas empiezan a ponerse realmente interesantes es cuando los insectos tienen que volverse inteligentes para manejar entornos especialmente difíciles. Las hormigas del desierto son un gran ejemplo de esto: mientras que la mayoría de las hormigas dependen de los senderos de las feromonas para navegar (recorren los senderos de su olor para regresar al nido), el calor del desierto significa que las feromonas no duran mucho. En cambio, las hormigas del desierto se basan en una variedad de técnicas, que incluyen el conteo de pasos, el flujo óptico, los puntos de referencia y, especialmente, la navegación solar.

Parece que estas técnicas podrían ser útiles para los robots pequeños y económicos que exploran el sistema solar, donde el GPS no está disponible y los sensores sofisticados vienen con un presupuesto de masa y energía para igualar. En Science Robotics, los investigadores describen cómo construyeron un robot con herramientas de navegación inspiradas en las hormigas del desierto, y pudieron hacer que deambulara un poco y que encontrara su camino a casa sin GPS, SLAM o algo un poco más complejo.

Lo primero que hay que entender es cómo navegan las hormigas del desierto. En general, el sistema que utilizan se denomina «integración de ruta», que es esencialmente el mismo que llamaríamos «recuento muerto». Al hacer un seguimiento de las distancias y direcciones recorridas en el tiempo, las hormigas pueden calcular la ruta más directa hacia atrás. a donde empezaron

Básicamente, si la hormiga se dirige al norte por un tiempo, y luego al este por el doble de tiempo, sabe que al viajar al sur y al oeste (el doble de largo), terminará bastante cerca de su posición inicial, y una vez que esté cerca, Puede reconocer visualmente puntos de referencia para volver exactamente a su nido.

Las hormigas del desierto son notablemente buenas en esto, como lo muestra la siguiente figura. Después de un viaje de ida y vuelta de casi 600 metros a lo largo de unos 20 minutos, la hormiga de un centímetro de longitud puede trazar una línea más o menos exactamente recta directamente a su nido en solo seis minutos.

Imagen: Aix Marseille University / CNRS / ISM Una hormiga del desierto C. fortis usa la «integración del camino» para encontrar su camino de regreso a su nido. La línea delgada muestra la trayectoria de salida (592.1 metros), con pequeños puntos negros que representan marcas de tiempo (cada 60 segundos). La hormiga regresó directamente a su nido (línea gruesa, 140.5 m de largo). El círculo pequeño (abajo a la derecha) marca la entrada del nido, y el negro grande muestra la ubicación de alimentación (centro superior).

Para que la integración del camino funcione, la hormiga debe rastrear dos cosas separadas: la distancia y la dirección. La distancia es la más fácil por mucho, ya que la hormiga puede usar una combinación (muy familiar para los robots) de conteo de zancadas y flujo óptico. La dirección es complicada: es bien sabido que las hormigas y otros insectos pueden usar el Sol para navegar, rastrear su ubicación en el cielo y corregir la rotación de la Tierra y el consiguiente movimiento aparente del Sol a lo largo del tiempo. Esto solo funcionaría cuando está realmente soleado, excepto que los ojos de las hormigas tienen fotorreceptores que son sensibles a la luz polarizada, lo que puede indicar la dirección del Sol, incluso si está nublado. Las hormigas también son sensibles a los rayos UV, lo que les ayuda a ver el Sol a través de la capa de nubes y el follaje.

Imagen: Aix Marseille University / CNRS / ISMAntBot es manejado por una placa Raspberry Pi 2B y sus sensores incluyen una brújula celeste, IMU y sensor de flujo óptico.

AntBot es un intento de replicar los sistemas de detección de las hormigas del desierto para ver qué tan bien un sistema autónomo podría usarlas para la navegación inspirada en las hormigas. AntBot es un hexápodo de 2,3 kilogramos, cuyas especificaciones físicas específicas no son realmente tan importantes para los fines de esta investigación. Lo que es importante son los sensores de AntBot, que incluyen un sensor óptico de flujo bioinspirado y una «brújula celeste inspirada en insectos» que consiste en un par de sensores de luz UV con polarizadores lineales giratorios. La brújula analiza la relación logarítmica entre los datos de estos dos sensores para determinar el ángulo de polarización de la luz entrante, que utiliza para determinar dónde está el Sol y, por lo tanto, en qué dirección está apuntando. AntBot puede hacerlo con mucha precisión: El error mediano fue de solo 0,02 ° cuando el cielo estaba ligeramente nublado, 0,59 ° bajo un cielo nublado.

Al combinar el seguimiento de la distancia del flujo óptico, el conteo de pasos y la navegación celeste al igual que la hormiga del desierto, probablemente no le sorprenda saber que AntBot pudo deambular repetidamente al azar en una distancia de unos 14 metros y luego regresar con éxito a su punto de partida. Esto es bueno, pero AntBot aún tiene mucho trabajo por hacer para demostrar que es tan talentoso como una hormiga, como señalan los investigadores:

“En su forma actual, AntBot tiene un diámetro de 45 cm y caminó a una velocidad de unos 10 cm/s durante los experimentos, mientras que las hormigas C. fortis desert tienen solo 1 cm de largo. Como se muestra en la Fig. 1A, la trayectoria de la hormiga mide 732,6 m. Por lo tanto, AntBot debería haber cubierto más de 32 km para poder compararlo adecuadamente con el rendimiento de navegación de las hormigas. Aunque AntBot puede caminar a velocidades de hasta 90 cm s, la navegación a gran escala requerirá mejorar los actuadores y la fuente de alimentación del robot hexápodo. Estas mejoras permitirán probar el modo PI-Full en contextos más naturales, como los terrenos escarpados en un entorno saturado (bosques) donde la vista del cielo a menudo está inhibida por la presencia de ramas y hojas en el campo visual de la brújula celeste.”

Es posible que los insectos hayan sido los primeros en descubrir este truco de luz polarizada, pero es posible que los humanos hayan estado usando una técnica similar para ayudarlos a navegar durante siglos. Hay algunas pruebas que sugieren que los vikingos (así como las culturas marineras posteriores que probablemente tuvieron la idea de los vikingos) podrían haber confiado en la luz polarizada para encontrar la ubicación del sol bajo un cielo cubierto usando una piedra solar, una de una pequeña cantidad de minerales que son birrefringentes. Los minerales birrefringentes son polarizadores, y cuando la luz entra en ellos, se divide en dos rayos que toman diferentes caminos a través de la piedra dependiendo de donde la fuente de luz es relativa a la piedra. Al mirar a través de la piedra hacia el cielo, es posible usar la birrefringencia para determinar dónde está el Sol con una precisión de unos pocos grados, incluso si está completamente nublado, o si el Sol está por debajo del horizonte. Todo lo que se necesita es un poco de luz solar, y una piedra solar funcionará.




El mineral birrefringente más común es la calcita, y los vikingos habrían tenido acceso a eso. Algunas leyendas vikingas se refieren directamente a las piedras solares, y las simulaciones han demostrado que el uso de una piedra solar podría haber tenido un gran impacto en la capacidad de los vikingos para realizar viajes prolongados a través del océano abierto. Los barcos vikingos y los sitios de entierro no han producido mucha calcita, pero es más frágil que los minerales y no necesariamente duraría tanto tiempo bajo el agua o en el suelo. Y si no terminaron usando algo como esto para navegar, bueno, realmente deberían haberlo hecho, porque tanto las hormigas como los robots están obteniendo grandes resultados con eso.

“AntBot: A six-legged walking robot able to home like desert ants in outdoor environments”
(«AntBot: un robot andante de seis patas capaz de vivir como hormigas del desierto en ambientes al aire libre»)
, por J. Dupeyroux; JR Serres; S. Viollet en la Universidad Aix de Marsella en Marsella, Francia, aparece en la edición actual de Science Robotics.