Archivo del Autor: ecarletti

Translatotron, el primer traductor simultáneo

La tecnología, elemento indispensable para romper las barreras, también idiomáticas. La evolución de los servicios basados en Inteligencia Artificial supera nuevos desafíos. Varias décadas después de desarrollar los primeros «convertidores» de audio, Google ha sido capaz de desarrollar un software que puede traducir la voz humana -de un idioma- a otro directamente sin necesidad de realizar ninguna conversión a texto.

Su nombre, sin embargo, suena a película de ciencia-ficción; Translatotron. No oculta sus intenciones porque está concebido para mejorar la relación entre el humano y la máquina, pero, como extensión, mejorar las comunicaciones entre personas igualando así sus condiciones (y limitaciones) idiomáticas. Un sistema que, en un futuro, puede dar pie a traductores automáticos como si se tratase de un teléfono móvil y que supone un nuevo paso en la traducción simultánea.

Esta herramienta combina diferentes tecnologías ya desarrolladas que empiezan, además, a formar parte de la jungla electrónica en la que reside el usuario. Tradicionalmente, estos sistemas eran independientes. Ahora, al separar la conversación en tres escenarios se pueden combinar. Así, el funcionamiento de Translatotron se basa en un solo proceso: en lugar de dividirlo en distintas fases como sucede en los sistemas de traducción actuales, que se apoyan en mecanismos de síntesis de voz a texto: reconocimiento de voz automático que transcriben la voz de origen como texto, los sistemas de traducción automática que convierten el texto transcrito al idioma de destino y, por último, la capacidad de sintetizar texto y voz para generar audio. Es decir, una traducción simultánea y sin apenas intermediarios, aunque no es perfecto: cada uno de estos pasos va arrastrando pequeños errores.

Google va más allá; ahora ha ideado el mecanismo para traducir de manera automática y realizar una traducción de voz a voz, con resultados muy precisos e, incluso, intentar «imitar» el habla de la persona. «Este sistema evita dividir la traducción en etapas separadas, con lo que aporta algunas ventajas sobre otras soluciones, incluido una mayor velocidad y evitando errores de composición entre el reconocimiento y la traducción, lo que facilita la retención de la voz del hablante original después de la traducción y un mejor manejo de palabras que no necesitan ser traducidas, por ejemplo, nombres propios», señalan en un comunicado fuentes del gigante de internet.

El proyecto, todavía en fase de pruebas, se basa en una red de secuencia a secuencia que procesa el audio de origen en espectrogramas -desgloses detallados de frecuencias del audio- y lo trata como un código de entrada, generando otros nuevos modelos de audio con contenido traducido para, posteriormente, convertir en idioma de destino. La gran aportación es que este proceso retiene el carácter de la voz original, por lo que la traducción, al final, no se realiza de forma robótica y enlatada sino intentando conservar algunos detalles del timbre de la voz, su color, la cadena e, incluso, el tono de la frase original.

Así, puede añadirse un mecanismo adicional que aprende las características del habla de una persona y que las codifica para lograr mantener su tono para utilizarlo posteriormente en la sintetización de la traducción de voz. En todo el proceso, la Inteligencia Artificial de Google utiliza objetivos multitarea para predecir los movimientos de la fuente, al mismo tiempo que genera los espectogramas de la traducción.La compañía ha expuesto, además, algunos logros alcanzados por este ingenio a través de varios clips de audio.



Un chip de I.A. supera a los robots y drones más impresionantes

En una reciente y deslumbrante mañana en California (EE.UU.), la investigadora del MIT Vivienne Sze subió a un pequeño escenario para realizar la que quizá haya sido presentación más desconcertante de su carrera. Dominaba el tema a la perfección. Debía hablar sobre los chips que se desarrollan en su laboratorio y de cómo iban a acercar el poder de la inteligencia artificial (IA) a una multitud de dispositivos con una potencia limitada sin tener que depender de los enormes centros de datos donde se realizan la mayoría de los cálculos de IA. Pero, tanto lo que vio en la conferencia como el público que acudió la hicieron reflexionar.

Hablamos de MARS, una conferencia de élite, solo para invitados, en la que los robots pasean (o vuelan) por un resort de lujo, mezclándose con famosos científicos y autores de ciencia ficción. Solo unos pocos investigadores fueron invitados a dar charlas técnicas, y las sesiones tienden a ser tanto inspiradoras como esclarecedoras. El público estaba compuesto por unos 100 investigadores, directores ejecutivos y algunos de los empresarios más importantes del mundo. El maestro de ceremonias de MARS fue el fundador y presidente de Amazon, Jeff Bezos, que estaba sentado en la primera fila. «Se podría decir que era un público de muy alto nivel», recuerda Sze con una sonrisa.

Otros ponentes de MARS presentaron robots que cortan al estilo kárate, drones que aletean como si fueran grandes insectos extrañamente silenciosos, e incluso proyectos para crear colonias marcianas. Ante esta competencia, los chips de Sze podían parecer más modestos. A simple vista, no se distinguen de los chips que hay dentro de cualquier dispositivo electrónico. Sin embargo, sus microprocesadores eran indudablemente mucho más importantes que cualquier otra cosa que hubo en la conferencia.

Nuevas capacidades

Los nuevos diseños de chips, como los que se desarrollan en el laboratorio de Sze, pueden ser cruciales para el futuro progreso de la IA, y los drones y robots que se dejaron ver en MARS. Hasta ahora, el software de IA se ejecutaba principalmente en unidades de procesamiento gráfico (GPU, por sus siglas en inglés), pero los nuevos diseños especializados de hardware podrían lograr que los algoritmos de IA sean más potentes, lo que abriría el camino a unas nuevas aplicaciones. Los nuevos chips de inteligencia artificial podrían masificar los robots de almacén y permitir que los teléfonos inteligentes crean escenarios fotorrealistas de realidad aumentada.

Los diseños de los chips de Sze son muy eficientes y flexibles, algo crucial para un campo que evoluciona tan rápido como la IA (ver ¿Quién ganará la batalla de los chips si el sector de la IA no para de cambiar?). En concreto, están diseñados para exprimir aún más potencial de los algoritmos de aprendizaje profundo que ya han revolucionado el mundo. Este proceso incluso podría lograr que este tipo de programas evolucionen por sí solos. Sze detalla: «Dado que la ley de Moore se ha ralentizado, necesitamos un nuevo hardware».

Esta ley choca cada vez más con los límites físicos de los componentes de ingeniería a escala atómica. Y está despertando un creciente interés en arquitecturas alternativas y nuevos enfoques de computación.

Este interés ha llegado incluso al Gobierno de EE. UU., que además de mantener su liderazgo en el diseño de chips en general, confía en los microprocesadores especializados para arrebatarle a China el trono de la IA. De hecho, los propios chips de Sze se están creando gracias a fondos de un programa de DARPA destinado a ayudar a desarrollar nuevos diseños de chips de IA (ver Así es la estrategia de EE.UU. para quitarle a China el trono de la IA).

Pero el impulso en la innovación de la fabricación de chips procede principalmente del aprendizaje profundo, una técnica muy poderosa de enseñar a las máquinas a realizar tareas útiles. En vez de dar a un ordenador un conjunto de reglas a seguir, una máquina se programa a sí misma básicamente. Los datos de entrenamiento se introducen en una gran red neuronal artificial simulada, que luego se ajusta para que produzca el resultado deseado. Con suficiente entrenamiento, un sistema de aprendizaje profundo puede encontrar patrones sutiles y abstractos en los datos. La técnica se aplica a una creciente variedad de tareas prácticas, desde el reconocimiento facial en los teléfonos inteligentes hasta la predicción de enfermedades a partir de imágenes médicas.

La carrera de los chips de IA

El aprendizaje profundo no depende tanto de la ley de Moore. Las redes neuronales ejecutan muchos cálculos matemáticos en paralelo, un enfoque para el que los GPU de videojuegos resultan mucho más efectivos dado que realizan computación paralela para renderizar imágenes en 3D. Pero los microchips diseñados específicamente para el aprendizaje profundo deberían ser aún más potentes.

El potencial de las nuevas arquitecturas de chips para mejorar la inteligencia artificial ha impulsado la actividad empresarial a un nivel que la industria de los chips no ha visto en décadas (ver La nueva carrera de los chips de silicio se libra en el cuadrilátero de la inteligencia artificial y China da la vuelta al marcador de los chips gracias a la IA). Las grandes empresas tecnológicas que quieren aprovechar y comercializar la inteligencia artificial, como Google, Microsoft y (sí) Amazon, están trabajando en sus propios chips de aprendizaje profundo. Pero también hay muchas start-ups trabajando en este campo. De hecho, el analista de microchips en la empresa de analistas Linley Group Mike Delmer considera que «es imposible hacer un seguimiento de todas las compañías que están apareciendo en el espacio del chip de IA». Y añade: «No bromeo cuando digo que descubrimos un nuevo chip casi cada semana«.

La verdadera oportunidad, según Sze, no reside en construir los chips de aprendizaje profundo más poderosos. La eficiencia energética también es importante porque la IA también debe funcionar más allá de los grandes centros de datos, lo que significa que los microprocesadores deberían ser capaces de funcionar con la energía disponible en el dispositivo. Esto se conoce como operar «al límite».




«La IA estará en todas partes, así que es importante encontrar formas de aumentar la eficiencia energética«, afirma el vicepresidente del grupo de productos de inteligencia artificial de Intel, Naveen Rao. Por ejemplo, el hardware de Sze es más eficiente, en parte, porque reduce físicamente el atasco entre el lugar en el que almacenan los datos y aquel en el que se analizan, pero también porque utiliza esquemas inteligentes para reutilizar los datos. Antes de unirse al MIT, Sze fue pionera en este enfoque para mejorar la eficiencia de la compresión de vídeo en Texas Instruments.

En un campo que avanza tan rápido, como es el aprendizaje profundo, el desafío para aquellos que trabajan con chips de IA consiste en asegurarse de que sean lo suficientemente flexibles para adaptarse a cualquier aplicación. Es fácil diseñar un chip súper eficiente capaz de hacer solo una tarea, pero ese tipo de producto se volverá obsoleto rápidamente.

El chip de Sze se llama Eyeriss. Desarrollado en colaboración con el científico investigador de Nvidia y profesor del MIT, Joel Emer, fue probado junto con varios procesadores estándar para ver cómo manejaba diferentes algoritmos de aprendizaje profundo. Equilibrando la eficiencia con la flexibilidad, el rendimiento del nuevo chip alcanza resulta entre 10 e incluso 1.000 veces más eficiente que el hardware existente, según un artículo publicado el año pasado.

Foto: Los investigadores del MIT Sertac Karaman y Vivienne Sze desarrollaron el nuevo chip.

Los chips de IA más simples ya están generando un gran impacto. Los teléfonos inteligentes de gama alta ya incluyen chips optimizados para ejecutar algoritmos de aprendizaje profundo para el reconocimiento de imagen y voz. Los chips más eficientes podrían permitir que estos dispositivos ejecuten un código de IA más potente con mejores capacidades. Los coches autónomos también necesitan poderosos chips de IA, ya que la mayoría de los prototipos dependen actualmente de un montón de ordenadores dentro del maletero.

Rao sostiene que los chips del MIT parecen prometedores, pero son muchos los factores que determinarán si una nueva arquitectura de hardware tendrá éxito. Uno de los más importantes, según él, es el desarrollo de software que permita a los programadores ejecutar código en él. «Hacer algo útil para aquellos que lo elaboran es probablemente el mayor obstáculo para la adopción», explica.

De hecho, el laboratorio de Sze también explora formas de diseñar software para explotar mejor las propiedades de los chips informáticos existentes. Y este trabajo se extiende más allá del aprendizaje profundo. Junto con el investigador del Departamento de Aeronáutica y Astronáutica del MIT Sertac Karaman, Sze desarrolló un chip de bajo consumo llamado Navion que realiza mapas en 3D y navegación de manera increíblemente eficiente, lo que permite integrarlo en un pequeño dron. Para este esfuerzo fue crucial diseñar un chip capaz de explotar el comportamiento de los algoritmos de navegación y crear un algoritmo que puediera aprovechar al máximo este chip personalizado. Junto al desarrollo del aprendizaje profundo, Navion refleja la forma en la que el software y el hardware de IA empiezan a evolucionar en simbiosis.

Los chips de Sze quizás no son tan llamativos como un dron con alas, pero el hecho de que fueran presentados en MARS refleja lo importante que será su tecnología, y la innovación del silicio en general, para el futuro de la IA. Después de su presentación, Sze afirma que algunos de los otros ponentes expresaron su interés en conocer más. «La gente encontró muchos casos importantes de aplicación», concluye. En otras palabras, podemos esperar que en la próxima conferencia de MARS los robots y drones lleven dentro algo bastante más especial.

Artículos relacionados:

Un robot que procura moverse tan bien como una hormiga
Chips de potencia ultra baja ayudan a hacer robots pequeños más capaces
Chip de cómputo basado en luz funciona similar a las neuronas



Chip de cómputo basado en luz funciona similar a las neuronas

¿Una tecnología que funciona como un cerebro? En estos tiempos de inteligencia artificial, esto ya no parece tan inverosímil; por ejemplo cuando un teléfono móvil puede reconocer caras o idiomas. Sin embargo, con aplicaciones más complejas, las computadoras aún se enfrentan rápidamente a sus propias limitaciones. Una de las razones de esto es que una computadora tradicionalmente tiene unidades separadas de memoria y procesador, cuya consecuencia es que todos los datos deben enviarse entre los dos. En este sentido, el cerebro humano está muy por delante incluso de las computadoras más modernas porque procesa y almacena información en el mismo lugar, en las sinapsis o conexiones entre neuronas, de las cuales hay trillones en el cerebro. Un equipo internacional de investigadores de las Universidades de Münster (Alemania), Oxford y Exeter (ambos del Reino Unido) han tenido éxito en el desarrollo de una pieza de hardware que podría abrir camino para crear computadoras que se parezcan al cerebro humano. Los científicos lograron producir un chip que contiene una red de neuronas artificiales que funciona con la luz y puede imitar el comportamiento de las neuronas y sus sinapsis.

Los investigadores pudieron demostrar que una red neurosináptica óptica es capaz de «aprender» la información y usarla como base para calcular y reconocer patrones, al igual que un cerebro. Como el sistema funciona solo con luz y no con electrones tradicionales, puede procesar datos muchas veces más rápido. «Este sistema fotónico integrado es un hito experimental», dice el profesor Wolfram Pernice de la Universidad de Münster y socio principal del estudio. «El abordaje podría usarse más adelante en muchos campos diferentes para evaluar patrones en grandes cantidades de datos, por ejemplo, en diagnósticos médicos». El estudio se publica en el último número de la revista «Nature».

La historia en detalle – financiación y método utilizado

La mayoría de los abordajes existentes relacionados con las llamadas redes neuromórficas se basan en la electrónica, mientras que los sistemas ópticos, en los que se utilizan fotones, es decir, partículas de luz, aún están en su infancia. El principio que los científicos alemanes y británicos han presentado ahora funciona de la siguiente manera: las guías de ondas ópticas que pueden transmitir luz y pueden fabricarse en microchips ópticos se han integrado con los llamados materiales de cambio de fase, que ya se encuentran en medios de almacenamiento como el DVD regrabable. Estos materiales de cambio de fase se caracterizan por el hecho de que cambian dramáticamente sus propiedades ópticas dependiendo de si son cristalinos, cuando sus átomos se organizan de manera regular, o amorfos, cuando sus átomos se organizan de manera irregular. Este cambio de fase puede ser activado por la luz si un láser calienta el material. «Debido a que el material reacciona con tanta fuerza y cambia sus propiedades dramáticamente, es muy adecuado para imitar las sinapsis y la transferencia de impulsos entre dos neuronas», dice el autor principal Johannes Feldmann, quien realizó muchos de los experimentos como parte de su tesis doctoral en la universidad de Munster.

En su estudio, los científicos lograron por primera vez fusionar muchos materiales de cambio de fase nanoestructurados en una red neurosináptica. Los investigadores desarrollaron un chip con cuatro neuronas artificiales y un total de 60 sinapsis. La estructura del chip, que consta de diferentes capas, se basó en la llamada tecnología multiplex de división de longitud de onda, que es un proceso en el que la luz se transmite a través de diferentes canales dentro del nanocircuito óptico.

Para probar en qué medida puede reconocer patrones el sistema, los investigadores lo «alimentaron» con información en forma de pulsos de luz, utilizando dos algoritmos diferentes de aprendizaje automático. En este proceso, un sistema artificial «aprende» de ejemplos y puede, en última instancia, generalizarlos. En el caso de los dos algoritmos utilizados, tanto en el llamado aprendizaje supervisado como en el no supervisado, la red artificial pudo, en última instancia, y sobre la base de determinados patrones de luz, reconocer un patrón que se estaba buscando, uno de los cuales era cuatro letras consecutivas.

«Nuestro sistema nos ha permitido dar un paso importante hacia la creación de hardware para computadoras que se comporta de manera similar a las neuronas y las sinapsis en el cerebro, y que también puede trabajar en tareas del mundo real», dice Wolfram Pernice. «Al trabajar con fotones en lugar de electrones, podemos aprovechar al máximo el potencial conocido de las tecnologías ópticas, no solo para transferir datos, como ha sido hasta ahora, sino también para procesar y almacenarlos en un solo lugar», agrega el coautor, Prof. Harish Bhaskaran, de la Universidad de Oxford.




Un ejemplo muy específico es que, con la ayuda de dicho hardware, se podrían identificar automáticamente las células cancerosas. Sin embargo, habrá que trabajar bastante para que estas aplicaciones se conviertan en realidad. Los investigadores necesitan aumentar la cantidad de neuronas artificiales y sinapsis, y aumentar la profundidad de las redes neuronales. Esto se puede hacer, por ejemplo, con chips ópticos fabricados con tecnología de silicio. «Este paso se debe tomar en el proyecto conjunto ‘Fun-COMP’ de la UE mediante el uso del procesamiento de fundición para la producción de nanochips», dice el coautor y líder del proyecto Fun-COMP, el profesor C. David Wright de la Universidad de Exeter.

Este trabajo de colaboración fue financiado por la DFG de Alemania, la EPSRC del Reino Unido y el ERC de la Comisión Europea, y los programas H2020 (el proyecto Fun-COMP).

________________________________________

• Fuente de la historia: Materiales proporcionados por la Universidad de Münster. Referencia de la publicación: J. Feldmann et al. “All-optical spiking neurosynaptic networks with self-learning capabilities” (Redes neurosinápticas totalmente ópticas con capacidades de autoaprendizaje). Nature, 2019 DOI: 10.1038 / s41586-019-1157-8. Universidad de Münster. «Step towards light-based, brain-like computing chip» (Paso hacia un chip de computación similar a un cerebro basado en la luz). ScienceDaily, 8 de mayo de 2019.



¿Instrucciones para tejer un robot?

Fabrican objetos blandos y accionados utilizando máquinas de tejer comerciales

Los investigadores de la Universidad Carnegie Mellon han usado máquinas de tejer controladas por computadora para crear juguetes de peluche y otros objetos tejidos que son accionados por tendones. Es un enfoque que, según dicen, podría usarse algún día para hacer robots blandos y tecnologías portátiles.

El software desarrollado por investigadores de Morphing Matter Lab y Dev Lab de CMU en el Human-Computer Interaction Institute hace posible que los objetos emerjan de las máquinas de tejer en sus formas deseadas y con los tendones ya integrados. Luego se pueden rellenar y los tendones se unen a los motores, según sea necesario.

Lea Albaugh, una Ph.D. estudiante que dirigió el esfuerzo de investigación, desarrolló la técnica de inserción de tendones y exploró este espacio de diseño para hacer pantallas que cambian de forma, figuras rellenas que dan abrazos cuando se tocan en el estómago, e incluso un suéter con una manga que se mueve por sí solo. Aunque en gran parte son fantasiosos, estos objetos demuestran capacidades que podrían tener aplicaciones serias, como robots blandos (ver video).

«La robótica suave es un campo en crecimiento», señaló Albaugh. «La idea es construir robots a partir de materiales que sean intrínsecamente seguros para que las personas estén cerca, por lo que sería muy difícil lastimar a alguien. Los componentes blandos actuados serían baratos de producir en las máquinas de tejer comerciales.

«Tenemos tantos objetos blandos en nuestras vidas y muchos de ellos podrían interactuar con esta tecnología», agregó. «Una prenda de vestir podría ser parte de su sistema de información personal. Su suéter, por ejemplo, podría darle un golpecito en el hombro para llamar su atención. La tela de una silla podría servir como una interfaz háptica. Las mochilas podrían abrirse».


Fabricación digital de objetos de acción suave mediante tejido a máquina de Morphing Matter Lab

Albaugh y sus co-investigadores, Scott Hudson y Lining Yao, miembros de la facultad de HCII, presentarán su investigación en CHI 2019, la Conferencia de la Asociación para Maquinaria de Computación sobre Factores Humanos en Sistemas de Computación, del 4 al 9 de mayo en Glasgow, Escocia.

Las máquinas de tejer comerciales están bien desarrolladas y se utilizan ampliamente, pero generalmente requieren una programación minuciosa para cada prenda. Esta nueva investigación se basa en el trabajo anterior de CMU para automatizar el proceso, lo que facilita el uso de estas máquinas de producción en serie para producir diseños personalizados y únicos.

«Es una línea muy conveniente para usar para producir objetos de punto activos», dijo Yao, profesor asistente de HCII. Otros investigadores han experimentado con objetos textiles accionados, anotó, pero se han enfrentado a la tarea que lleva mucho tiempo de agregar tendones a los artículos terminados. Insertar tendones en los materiales a medida que se crean ahorra tiempo y esfuerzo, y agrega precisión a sus movimientos.

Los investigadores desarrollaron métodos para insertar líneas de tendones en forma horizontal, vertical y diagonal en láminas y tubos de tela. Mostraron que la forma de la tela, combinada con la orientación del recorrido del tendón, puede producir una variedad de efectos de movimiento, entre ellos curvas asimétricas, curvas en forma de S y giros. La rigidez de los objetos se puede ajustar rellenándolos con diversos materiales disponibles para los aficionados.

Se pueden usar tendones hechos con varios materiales, incluidos hilos de acolchado envueltos en poliéster, hilo de seda pura y monofilamento de nylon.

La estudiante Lea Albaugh desarrolló una técnica de inserción de tendones y exploró técnicas como hacer muñecos de peluche que dan abrazos cuando se los presiona en el estómago.

Además de activar los objetos, estas técnicas también pueden agregar capacidades de detección a los objetos. Al unir sensores a cada tendón, por ejemplo, es posible sentir la dirección en que se está doblando o torciendo el objeto. Al tejer con hilo conductor, los investigadores demostraron que podían crear tanto almohadillas de contacto para una detección táctil capacitiva, como sensores de tensión para detectar si una muestra está estirada.

Ya se está utilizando impresión 3D para hacer objetos personalizados, con movimientos y componentes robóticos, dijo Albaugh, aunque los materiales por lo general son duros. El tejido de punto controlado por computadora tiene el potencial de ampliar las posibilidades y hacer que los resultados sean más amigables para las personas.

«Creo que hay un enorme poder en el uso de materiales que las personas ya asocian con la comodidad», dijo.

Logran que catéter robótico ingrese por sí solo al corazón palpitante de cerdo vivo

El sistema de senseo del dispositivo fue inspirado por la forma en que las cucarachas se mueven a lo largo de los túneles.

Operar dentro de un corazón que late es un procedimiento complejo y delicado que requiere cirujanos expertos. El personal médico generalmente utiliza joysticks de control y una combinación de rayos X o ultrasonido para guiar con cuidado los catéteres a través del cuerpo.

Ahora, por primera vez, un catéter robótico ha sido capaz de navegar de forma autónoma dentro de un corazón para ayudar a llevar a cabo un procedimiento particularmente complejo. El dispositivo, que se inspiró en la forma en que ciertos animales aprenden sobre su entorno, se utilizó para ayudar a los cirujanos a cerrar las hemorragias en los corazones de cinco cerdos vivos.

«Las ratas usan bigotes para palpar a lo largo de la pared, los humanos sienten su camino y las cucarachas usan sus antenas», dice Pierre Dupont en la Escuela de Medicina de Harvard, quien dirigió el nuevo estudio publicado en Science Robotics. «Del mismo modo, este dispositivo usa sensores táctiles para elabora dónde está, y dónde ir a continuación, basado en un mapa del corazón «.

El dispositivo tiene 8 mm de ancho, con una cámara y una luz LED en su extremo que funciona como un sensor óptico y táctil combinado. Se usó un algoritmo de aprendizaje automático que se entrenó en alrededor de 2000 imágenes de tejido cardíaco para guiarlo a medida que se movía. El sensor táctil palpa periódicamente el tejido del corazón mientras se mueve, lo que ayuda a saber dónde está y asegurándose de no dañar el tejido.




Durante el experimento, el catéter navegó a la ubicación correcta el 95% del tiempo de los 83 ensayos en cinco cerdos. Esta es una tasa de éxito similar a la de un clínico con experiencia, y el procedimiento no dejó hematomas ni daños en los tejidos, según el equipo de investigación. Una vez en posición, los cirujanos tomaron el control y llevaron a cabo el procedimiento para reparar la hemorragia. Aunque han estado disponibles catéteres robóticos durante algunos años, este es el primero que ha podido encontrar su camino sin ayuda humana.

La idea es que, un día, esa tecnología podría liberar a los cirujanos para concentrarse en otras tareas o ayudar al personal médico menos experimentado a realizar procedimientos más complejos. La tecnología podría ser reutilizada para su uso en humanos dentro de cinco años, dice Dupont.

Artículo original:
Technology Review
Science Robotics