Archivo de la etiqueta: Novedades

¿Instrucciones para tejer un robot?

Fabrican objetos blandos y accionados utilizando máquinas de tejer comerciales

Los investigadores de la Universidad Carnegie Mellon han usado máquinas de tejer controladas por computadora para crear juguetes de peluche y otros objetos tejidos que son accionados por tendones. Es un enfoque que, según dicen, podría usarse algún día para hacer robots blandos y tecnologías portátiles.

El software desarrollado por investigadores de Morphing Matter Lab y Dev Lab de CMU en el Human-Computer Interaction Institute hace posible que los objetos emerjan de las máquinas de tejer en sus formas deseadas y con los tendones ya integrados. Luego se pueden rellenar y los tendones se unen a los motores, según sea necesario.

Lea Albaugh, una Ph.D. estudiante que dirigió el esfuerzo de investigación, desarrolló la técnica de inserción de tendones y exploró este espacio de diseño para hacer pantallas que cambian de forma, figuras rellenas que dan abrazos cuando se tocan en el estómago, e incluso un suéter con una manga que se mueve por sí solo. Aunque en gran parte son fantasiosos, estos objetos demuestran capacidades que podrían tener aplicaciones serias, como robots blandos (ver video).

«La robótica suave es un campo en crecimiento», señaló Albaugh. «La idea es construir robots a partir de materiales que sean intrínsecamente seguros para que las personas estén cerca, por lo que sería muy difícil lastimar a alguien. Los componentes blandos actuados serían baratos de producir en las máquinas de tejer comerciales.

«Tenemos tantos objetos blandos en nuestras vidas y muchos de ellos podrían interactuar con esta tecnología», agregó. «Una prenda de vestir podría ser parte de su sistema de información personal. Su suéter, por ejemplo, podría darle un golpecito en el hombro para llamar su atención. La tela de una silla podría servir como una interfaz háptica. Las mochilas podrían abrirse».


Fabricación digital de objetos de acción suave mediante tejido a máquina de Morphing Matter Lab

Albaugh y sus co-investigadores, Scott Hudson y Lining Yao, miembros de la facultad de HCII, presentarán su investigación en CHI 2019, la Conferencia de la Asociación para Maquinaria de Computación sobre Factores Humanos en Sistemas de Computación, del 4 al 9 de mayo en Glasgow, Escocia.

Las máquinas de tejer comerciales están bien desarrolladas y se utilizan ampliamente, pero generalmente requieren una programación minuciosa para cada prenda. Esta nueva investigación se basa en el trabajo anterior de CMU para automatizar el proceso, lo que facilita el uso de estas máquinas de producción en serie para producir diseños personalizados y únicos.

«Es una línea muy conveniente para usar para producir objetos de punto activos», dijo Yao, profesor asistente de HCII. Otros investigadores han experimentado con objetos textiles accionados, anotó, pero se han enfrentado a la tarea que lleva mucho tiempo de agregar tendones a los artículos terminados. Insertar tendones en los materiales a medida que se crean ahorra tiempo y esfuerzo, y agrega precisión a sus movimientos.

Los investigadores desarrollaron métodos para insertar líneas de tendones en forma horizontal, vertical y diagonal en láminas y tubos de tela. Mostraron que la forma de la tela, combinada con la orientación del recorrido del tendón, puede producir una variedad de efectos de movimiento, entre ellos curvas asimétricas, curvas en forma de S y giros. La rigidez de los objetos se puede ajustar rellenándolos con diversos materiales disponibles para los aficionados.

Se pueden usar tendones hechos con varios materiales, incluidos hilos de acolchado envueltos en poliéster, hilo de seda pura y monofilamento de nylon.

La estudiante Lea Albaugh desarrolló una técnica de inserción de tendones y exploró técnicas como hacer muñecos de peluche que dan abrazos cuando se los presiona en el estómago.

Además de activar los objetos, estas técnicas también pueden agregar capacidades de detección a los objetos. Al unir sensores a cada tendón, por ejemplo, es posible sentir la dirección en que se está doblando o torciendo el objeto. Al tejer con hilo conductor, los investigadores demostraron que podían crear tanto almohadillas de contacto para una detección táctil capacitiva, como sensores de tensión para detectar si una muestra está estirada.

Ya se está utilizando impresión 3D para hacer objetos personalizados, con movimientos y componentes robóticos, dijo Albaugh, aunque los materiales por lo general son duros. El tejido de punto controlado por computadora tiene el potencial de ampliar las posibilidades y hacer que los resultados sean más amigables para las personas.

«Creo que hay un enorme poder en el uso de materiales que las personas ya asocian con la comodidad», dijo.

Este puede ser el Apple II de los brazos de robot impulsados ​​por IA

Un nuevo brazo robótico de bajo costo que se puede controlar con un casco de realidad virtual facilitará la experimentación con inteligencia artificial y robótica.

Los robots en las fábricas de hoy son potentes y precisos, pero tan tontos como una tostadora. Un nuevo brazo robot, desarrollado por un equipo de investigadores de UC Berkeley, está destinado a cambiar eso al proporcionar una plataforma barata y potente para la experimentación de la Inteligencia Artificial. El equipo compara su creación con la Apple II, la computadora personal que atrajo a los aficionados y hackers en los años 70 y 80, iniciando una revolución tecnológica.

Los robots y la inteligencia artificial han evolucionado en paralelo como áreas de investigación durante décadas. En los últimos años, sin embargo, la IA ha avanzado rápidamente cuando se aplica a problemas abstractos como etiquetar imágenes o jugar videojuegos. Pero mientras que los robots industriales pueden hacer las cosas con mucha precisión, requieren una programación minuciosa y no pueden adaptarse a los cambios más pequeños. Han surgido robots más baratos y seguros, pero la mayoría no están diseñados específicamente para ser controlados con software de IA.

“Los robots son cada vez más capaces de aprender nuevas tareas, ya sea a través de prueba y error, o mediante una demostración experta”, dice Stephen McKinley, un postdoctorado en UC Berkeley que estuvo involucrado en el desarrollo del robot. “Sin una plataforma de bajo costo ─un dispositivo tipo Apple II─ la experimentación, la prueba y el error y la investigación productiva continuarán avanzando lentamente. Existe un potencial para que la investigación se acelere en gran medida al hacer que más robots sean más accesibles «.

El nuevo brazo, conocido como Blue, cuesta alrededor de $ 5.000, y puede controlarse a través de un casco de realidad virtual, una técnica que está resultando útil para entrenar algoritmos de IA que controlan robots.


Blue es capaz de transportar cargas relativamente pesadas, pero también es extremadamente «manejable», lo que significa que obedecerá cuando se lo empuje o jale. Esto hace que sea seguro para que las personas trabajen a su lado y permite que se le muestre físicamente cómo hacer algo. El sistema proporciona software de bajo nivel para controlar el robot y para el sistema de realidad Virtual, y está diseñado para ser compatible con cualquier computadora que ejecute el software de Inteligencia Artificial.



El proyecto proviene del laboratorio de Pieter Abbeel, un profesor de la UC Berkeley que ha sido pionero en la aplicación de la inteligencia artificial a la robótica. Las prácticas informáticas para el proyecto han sido licenciadas por UC Berkeley por una nueva compañía llamada Berkeley Open Arms, que desarrollará y venderá el hardware.

Sigue siendo extremadamente difícil traducir el aprendizaje automático de un entorno virtual al mundo real. A pesar de esto, los investigadores académicos han avanzado en la aplicación del aprendizaje automático al hardware del robot, lo que ha llevado a demostraciones espectaculares y algunas empresas comerciales.

Algunas compañías astutas han tomado nota de la tendencia. Nvidia, un fabricante de chips que ha impulsado el auge de la IA al hacer microprocesadores y software para el aprendizaje profundo, lanzó recientemente un laboratorio dedicado a explorar las aplicaciones de la IA a los robots.

El CEO de Nvidia, Jensen Huang, describe al robot de Berkeley como «muy emocionante».

Huang señala que si bien comprar un robot industrial puede costar alrededor de $ 50.000, puede costar muchas veces eso reprogramarlo para una nueva serie de tareas diferentes. «Está al revés», dice. Espera grandes avances en robótica en los próximos años gracias a los avances en el aprendizaje automático y la simulación de realidad virtual: «Los robots y la IA son ahora lo mismo».



Crean robots de partículas basados en el concepto de la «Plaga Gris»

Crean un nuevo tipo de robot compuesto de muchas partículas simples sin ningún control centralizado o punto único de fallo


Los robots partícula están compuestos de componentes débilmente acoplados, o partículas, que carecen de una identidad individual o posición direccionable. Sólo son capaces de un simple movimiento: expansión y contracción. Sin embargo, cuando un grupo de partículas es coordinado para moverse como un colectivo, se observa un interesante comportamiento. Incluso en configuraciones amorfas, los robots de partículas explotan los fenómenos mecánicos estadísticos para producir la locomoción.
Crédito: Shuguang Li/Ingeniería De Columbia

Los robots actuales son, generalmente, entidades auto-contenidas hechas en base a la interdependencia de sus subcomponentes, cada uno con una función específica. Si una parte falla, el robot deja de funcionar. En la robótica de enjambres, cada robot es una máquina que funciona de manera independiente.

En un nuevo estudio publicado la semana pasada en Nature, los investigadores en Ingeniería de Columbia y el MIT de Ciencias de la computación y el Laboratorio de Inteligencia Artificial (CSAIL) demuestran por primera vez la manera de hacer un robot compuesto de muchos componentes débilmente acoplados, o «partículas». A diferencia de los enjambres o los robots modulares, cada componente es simple, y no tiene una identificación o identidad individual. En su sistema, lo que los investigadores llaman «el robot de partículas», cada partícula sólo puede realizar oscilaciones volumétricas uniformes (leves expansiones y contracciones), pero no se puede mover en forma independiente.

 

El equipo, liderado por Hod Lipson, profesor de ingeniería mecánica en Ingeniería de Columbia, y la directora del CSAIL, Daniela Rus, descubrió que al agrupar miles de estas partículas juntas en un conjunto “viscoso” y hacerlo oscilar en reacción a una fuente de luz, cada robot partícula lentamente comenzó a moverse hacia adelante, hacia la luz.

«Usted puede pensar en nuestro nuevo robot como la proverbial «Gray Goo«, dice Lipson. «Nuestro robot no tiene ningún punto único de fallo y no hay un control centralizado. Todavía es bastante primitivo, pero ahora sabemos que este paradigma fundamental de la robótica es realmente posible. Pensamos que incluso puede explicar cómo se pueden mover juntas las células en grupos, aunque las células individuales no pueden hacerlo.»

Los investigadores han estado construyendo robots autónomos durante más de un siglo, pero estos han sido máquinas no biológicas que no pueden crecer, sanar, o recuperarse de los daños. El equipo de Ingeniería de Columbia/MIT se ha centrado en el desarrollo de robots duraderos y escalables que pueden funcionar incluso cuando fallan componentes individuales.

El concepto de «gray goo» (plaga gris), un robot compuesto de miles de millones de nanopartículas, ha fascinado a los fans de la ciencia ficción durante décadas. Pero la mayoría de los investigadores la han descartado como una teoría descabellada.

«Hemos estado tratando de repensar de manera fundamental nuestro enfoque de la robótica, para descubrir si hay una manera de crear robots de manera diferente», dice Lipson, quien dirige el Laboratorio de Máquinas Creativas. «No sólo hacer que un robot tenga aspecto de criatura biológica sino, en realidad, construirlo como un sistema biológico, creando algo de gran complejidad y habilidades, y sin embargo compuesto de simples partes fundamentales.»

Rus, que es también Profesor de Ingeniería Eléctrica y Ciencias de la computación en el MIT, añade, «Todas las criaturas en la naturaleza son [constituidos por] células que se combinan de diferentes maneras para formar los organismos. En el desarrollo de los robots de partículas, la pregunta que nos hacemos es, ¿podemos tener células robóticas que se pueden componer de diferentes maneras para formar diferentes robots? El robot podría tener la mejor forma requerida por la tarea que debe realizar: una serpiente para arrastrarse a través de un túnel, o una máquina con tres manipuladores para la planta de una fábrica. Incluso podríamos dar a estos robots de partículas la capacidad de darse forma ellos mismos”. Supongamos, por ejemplo, que un robot necesita un destornillador de su mesa de trabajo, y su controlador de tornillos está demasiado lejos para alcanzarlo. ¿Qué pasa si el robot pudiese intercambiar sus células para desarrollar un brazo? Cuando cambian sus metas, su cuerpo puede cambiar también.

El equipo, trabajando con Chuck Hoberman en Harvard Wyss Institute y otros investigadores de la Cornell, utiliza muchos componentes idénticos, o partículas, que pueden realizar un simple movimiento como expandirse y contraerse. En las simulaciones, hicieron demostraciones con robots compuestos de 100.000 partículas. Experimentalmente, han demostrado un sistema compuesto de dos docenas de partículas.




«Las partículas más cerca de la fuente de luz experimentan una luz más brillante y por lo tanto inician primero su ciclo «, explica Shuguang Li, primer co-autor del artículo que llevó a cabo los experimentos físicos. Li, que fue becario postdoctoral en Lipson, su laboratorio original de Cornell, y está en la actualidad en una estancia posdoctoral con Rus en CSAIL, continúa. «Ese movimiento crea una especie de ola en todo el conjunto, desde los que están más cerca de la luz a los más alejados, y la ola hace que todo el conjunto avance hacia la luz. El movimiento hacia la luz produce un movimiento global, aunque las partículas individuales no se pueden mover de forma independiente».

Modelando este comportamiento en las simulaciones, se ha probado hacer que eviten obstáculos y transportar objetos a mayores escalas, con cientos y miles de partículas. También fueron capaces de demostrar la capacidad de adaptación del paradigma de robot de partículas tanto ante componentes ruidosos como con fallas individuales.

«Hemos encontrado que nuestro robot de partículas mantiene aproximadamente la mitad de su velocidad a funcionamiento pleno, aún cuando el 20 por ciento de las partículas están muertas», dice Richa Batra, primer co-autor del artículo y estudiante de Doctorado de Lipson que dirigió el estudio de simulación.

El equipo ya está probando su sistema con una mayor cantidad de partículas por centímetro. Asimismo, se están explorando otras formas los robots de partícula, tales como microesferas vibrando.

«Creemos que algún día será posible hacer estos tipos de robots de millones de partículas diminutas, como microesferas que responden al sonido o la luz o el gradiente químico», dice Lipson. «Los robots podrían ser utilizados para hacer cosas como limpiar áreas o explorar terrenos o estructuras desconocidas.»

________________________________________
Fuente:
Materiales proporcionados por la Universidad de Columbia, Escuela de Ingeniería y Ciencias Aplicadas. Original escrito por Holly Evarts.
________________________________________
Referencia de la publicación:

Columbia University School of Engineering and Applied Science. «Robotic ‘gray goo’: Researchers create new kind of robot composed of many simple particles with no centralized control or single point of failure.» ScienceDaily. ScienceDaily, www.sciencedaily.com/releases/2019/03/190320141024.htm

Shuguang Li, Richa Batra, David Brown, Hyun-Dong Chang, Nikhil Ranganathan, Chuck Hoberman, Daniela Rus & Hod Lipson. Particle robotics based on statistical mechanics of loosely coupled components. Nature, 2019 DOI: 10.1038/s41586-019-1022-9
________________________________________



Crean piel electrónica resistente al agua, sensible y con capacidad de auto-reparación

Un equipo de científicos de la Universidad Nacional de Singapur (NUS) se inspiró en los invertebrados submarinos como las medusas para crear una piel electrónica con una funcionalidad similar.

Al igual que una medusa, la piel electrónica es transparente, estirable, sensible al tacto y se auto-repara en entornos acuáticos. Pero además es conductora de la electricidad, y podría usarse en todo, desde pantallas táctiles resistentes al agua hasta robots acuáticos blandos.

El profesor asistente Benjamin Tee y su equipo del Departamento de Ciencia e Ingeniería de Materiales de la Facultad de Ingeniería de la Universidad Nacional de Singapur desarrollaron el material, junto con colaboradores de la Universidad de Tsinghua y la Universidad de California en Riverside.

El equipo de ocho investigadores dedicó poco más de un año a desarrollar el material, y su invención se publicó por primera vez este año en la revista Nature Electronics.

Materiales auto-reparables, transparentes e impermeables para un amplio rango de usos

El profesor asistente Tee ha estado trabajando en pieles electrónicas durante muchos años, y fue parte del equipo que desarrolló los primeros sensores electrónicos de piel con auto-reparación en 2012.

Su experiencia en esta área de investigación lo llevó a identificar los obstáculos clave que aún no han superado las pieles electrónicas auto-reparables. «Uno de los desafíos con la mayoría de los materiales auto-reparables actuales es que no son transparentes y no funcionan de manera eficiente cuando están mojados», dijo. «Estos inconvenientes los hacen menos útiles para aplicaciones electrónicas, como las pantallas táctiles, que a menudo deben usarse en condiciones de clima con humedad extrema».

Continuó: «Con esta idea en mente, comenzamos a observar a las medusas; son transparentes y capaces de percibir en el ambiente acuático. Entonces, nos preguntamos cómo podríamos hacer un material artificial que pudiera imitar la naturaleza resistente al agua de las medusas y, sin embargo, fuese sensible al tacto».

Tuvieron éxito en este esfuerzo al crear un gel que consiste en un polímero a base de fluorocarbono con un líquido ionizado rico en flúor. Cuando se los combina, la red de polímeros interactúa con el líquido iónico a través de interacciones ión-dipolo altamente reversibles, lo que le permite auto-repararse.

Al elaborar las ventajas de esta configuración, el profesor Tee explicó: «La mayoría de los geles de polímeros conductores, como los hidrogeles, se hinchan al sumergirlos en agua o se secan con el tiempo en el aire, lo que hace que nuestro material sea diferente es que puede conservar su forma tanto en entornos húmedos como secos. Funciona bien en agua de mar e incluso en ambientes ácidos o alcalinos».


La próxima generación de robots blandos

La piel electrónica se crea imprimiendo el material nuevo dentro de circuitos electrónicos. Como es un material blando y estirable, sus propiedades eléctricas cambian cuando se toca, presiona o se tensa.

«Luego podemos medir este cambio y convertirlo en señales eléctricas legibles para crear una amplia gama de diferentes aplicaciones de sensores», agregó el profesor Tee.

«La capacidad de imprimir nuestro material en 3D también muestra potencial en la creación de tableros de circuitos totalmente transparentes que podrían usarse en aplicaciones robóticas. Esperamos que este material pueda usarse para desarrollar varias aplicaciones en tipos emergentes de robots blandos», agregó el profesor Tee, quien también pertenece al Departamento de Ingeniería Eléctrica e Informática de NUS, y el Instituto Biomédico para la Investigación y Tecnología de Salud Global (BIGHEART) en NUS.





Los robots blandos, y la electrónica blanda en general, buscan imitar los tejidos biológicos para hacerlos más compatibles mecánicamente con las interacciones hombre-máquina. Además de las aplicaciones de robots blandos convencionales, la tecnología impermeable de este nuevo material permite el diseño de robots anfibios y dispositivos electrónicos resistentes al agua.

Una ventaja adicional de esta piel electrónica autorreparable es el potencial que tiene para reducir la basura tecnológica. Tee explicó: «Cada año, se generan globalmente millones de toneladas de desechos electrónicos provenientes de teléfonos móviles, tabletas, etc. Esperamos crear un futuro en el que los dispositivos electrónicos hechos de materiales inteligentes puedan realizar acciones de reparación automática para reducir la cantidad de desechos electrónicos en el mundo».

Próximos pasos

El profesor Tee y su equipo continuarán su investigación y esperan explorar más posibilidades de este material en el futuro. Dijo: «Actualmente, estamos haciendo uso de las propiedades integrales del material para hacer nuevos dispositivos optoelectrónicos, que podrían utilizarse en muchas nuevas interfaces de comunicación hombre-máquina».

Fuente de la historia: ScienceDaily. Materiales proporcionados por la Universidad Nacional de Singapur. Referencia de la publicación: Yue Cao, Yu Jun Tan, Si Li, Wang Wei Lee, Hongchen Guo, Yongqing Cai, Chao Wang, Benjamin C.-K. Tee. Pieles electrónicas autocurables para ambientes acuáticos. Nature Electronics, 2019; 2 (2): 75 DOI: 10.1038 / s41928-019-0206-5

Artículos relacionados:
Dando sentido del tacto a los robots
Nuevos micro robots de tamaño celular podrían hacer viajes increíbles
Una prótesis que restaura la sensación de dónde está tu mano
Módulo de teclado sensible al tacto TTP229
Un pequeño robot blando con muchas patas administraría fármacos al cuerpo humano
Usando electricidad y agua, un nuevo tipo de motor puede poner microrobots en movimiento
FlexShapeGripper: el agarre de la lengua de un camaleón



Un pequeño robot blando con muchas patas administraría fármacos al cuerpo humano

A partir de una investigación dirigida por la Universidad de la Ciudad de Hong Kong (CityU) se desarrolló un novedoso robot blando con patas similares a una oruga, capaz de transportar cargas pesadas, y adaptable a entornos adversos. Este mini robot podría allanar el camino para el avance de la tecnología médica, como la administración de medicamentos en el interior del cuerpo humano.

EN UNA INVESTIGACIÓN DIRIGIDA POR LA UNIVERSIDAD DE LA CIUDAD DE HONG KONG SE DESARROLLÓ UN NUEVO ROBOT CON PATAS DE ORUGA CAPAZ DE LLEVAR CARGAS PESADAS EN RELACIÓN A SU TAMAÑO Y ADAPTARSE AL AMBIENTE ADVERSO

En todo el mundo se han realizado investigaciones sobre el desarrollo de robots blandos. Pero el nuevo diseño de CityU con patas múltiples ayuda a reducir significativamente la fricción, de modo que el robot puede moverse de manera eficiente sobre superficies dentro del cuerpo revestidas o completamente sumergidas en fluidos corporales, como sangre o mucosidad.

Los hallazgos de la investigación se publicaron en el último número de la revista científica Nature Communications, titulada “A Bio-inspired Multilegged Soft Millirobot that Functions in Both Dry and Wet Conditions” (Un millirobot blando de múltiples patas de inspiración biológica que funciona en condiciones tanto secas como húmedas).

Diseño de robot de inspiración biológica

Lo que hace que este milli-robot se destaque es que tiene cientos de patas puntiagudas de menos de 1 mm de largo que se ven como un cabello pequeño y corto. Este diseño único no fue una elección al azar. El equipo de investigación ha estudiado las estructuras de las patas de cientos de animales terrestres, incluidos aquellos con 2, 4, 8 o más patas, en particular la relación entre la longitud de las patas y la brecha entre las patas. Y a partir de ahí, tuvieron su inspiración.


«La mayoría de los animales tienen una proporción de pata a brecha de 2:1 a 1:1. Así que decidimos crear nuestro robot con una proporción de 1:1», explica el Dr. Shen Yajing, profesor asistente del Departamento de Ingeniería Biomédica de la Ciudad (BME), quien dirigió la investigación.

El grosor del cuerpo del robot es de aproximadamente 0,15 mm, y cada pata cónica mide 0,65 mm de largo. El espacio entre las patas es de aproximadamente 0,6 mm, lo que hace que la relación entre la longitud de la pata y la separación entre ellas sea de aproximadamente 1:1. Además, las patas puntiagudas del robot han reducido considerablemente su área de contacto y, por lo tanto, la fricción con la superficie. Las pruebas de laboratorio mostraron que el robot de patas múltiples tiene 40 veces menos fricción que un robot sin extremidades, tanto en ambientes húmedos como secos.

Aparte del diseño de patas múltiples, los materiales también son importantes. El robot está fabricado con un material de silicona llamado polidimetilsiloxano (PDMS) incrustado con partículas magnéticas que le permite controlarlo de forma remota mediante la aplicación de una fuerza electromagnética. «Tanto los materiales como el diseño de patas múltiples mejoran en gran medida las propiedades hidrofóbicas del robot. Además, la pieza de silicona es blanda y se puede cortar fácilmente para crear robots de varias formas y tamaños para diferentes aplicaciones», dice el profesor Wang Zuankai del Departamento de Ingeniería mecánica (MNE), que concibió esta idea de investigación e inició la colaboración entre los investigadores.

Moverse cómodo en ambientes hostiles

Controlado por un manipulador magnético que se utiliza en experimentos, el robot puede moverse tanto con un patrón de propulsión de aleta como con un patrón de péndulo invertido, lo que significa que puede usar sus patas delanteras para aletear hacia adelante, y también balancear el cuerpo apoyado sobre las patas izquierdas y derechas alternativamente, para avanzar respectivamente.

«La superficie rugosa y la textura cambiante de diferentes tejidos dentro del cuerpo humano causan que el transporte sea un desafío. Nuestro robot de varias patas muestra un rendimiento impresionante en diversos terrenos y, por lo tanto, abre amplias aplicaciones para el suministro de medicamentos dentro del cuerpo», dice el profesor Wang.




El equipo de investigación demostró además que al enfrentar un obstáculo más alto que la longitud de sus patas, el robot, con sus patas blandas deformables, es capaz de levantar un extremo de su cuerpo para formar un ángulo o hasta 90 grados y cruzar el obstáculo fácilmente. Y el robot puede aumentar su velocidad cuando se incrementa la frecuencia electromagnética aplicada.

El robot también muestra una notable capacidad de carga. Las pruebas de laboratorio mostraron que el robot era capaz de llevar una carga 100 veces más pesada que él mismo, una fuerza comparable a una hormiga, uno de los hércules más fuertes de la naturaleza, como si un ser humano pudiese levantar fácilmente un minibús de 26 asientos.

«La sorprendente capacidad de transporte, la eficiente locomoción y la buena capacidad para cruzar obstáculos hacen que este milli-robot sea extremadamente adecuado para aplicaciones en un entorno hostil, por ejemplo, para enviar un medicamento a un lugar asignado a través del sistema digestivo o para realizar una inspección médica», agrega Dr. Shen.

Antes de realizar pruebas adicionales en animales y, finalmente, en seres humanos, los equipos de investigación están desarrollando y perfeccionando su investigación en tres aspectos: encontrar un material biodegradable, estudiar nuevas formas y agregar características adicionales.

«Esperamos crear un robot biodegradable en los próximos dos o tres años para que se descomponga naturalmente después de su misión de administración de medicamentos», dice el Dr. Shen.

Artículos relacionados:

Usando electricidad y agua, un nuevo tipo de motor puede poner microrobots en movimiento
Nuevos micro robots de tamaño celular podrían hacer viajes increíbles
Un robot que procura moverse tan bien como una hormiga