Archivo por meses: mayo 2019

Un sistema llamado ‘Neural Lander’ usa IA para aterrizar drones sin problemas

El nuevo sistema emplea una red neuronal profunda para superar el desafío de la turbulencia de efecto suelo

Aterrizar los drones multi-rotor sin problemas es difícil. Una compleja turbulencia es creada por el flujo de aire de cada rotor que rebota del suelo a medida que el suelo crece cada vez más cerca durante un descenso. Esta turbulencia no se comprende bien, ni es fácil de compensar, especialmente en los drones autónomos. Es por eso que a menudo el despegue y el aterrizaje son las dos partes más difíciles del vuelo de un avión no tripulado. Los drones normalmente se tambalean y avanzan con lentitud hasta el aterrizaje, cuando finalmente se corta la energía y se dejan caer la distancia restante al suelo.

En el Centro de Tecnologías y Sistemas Autónomos (CAST – Center for Autonomous Systems and Technologies) de Caltech, los expertos en inteligencia artificial se han unido a expertos en control para desarrollar un sistema que utiliza una red neuronal profunda para ayudar a los drones autónomos a «aprender» cómo aterrizar de forma más segura y rápida, mientras se consume menos energía. El sistema que han creado, denominado «Neural Lander», es un controlador basado en aprendizaje que rastrea la posición y la velocidad del avión no tripulado, y modifica su trayectoria de aterrizaje y la velocidad del rotor para lograr el aterrizaje más suave posible.

«Este proyecto tiene el potencial de ayudar a los drones a volar de manera más suave y segura, especialmente en presencia de ráfagas de viento impredecibles, y consumir menos energía de la batería, ya que los drones pueden aterrizar más rápidamente», dice Soon-Jo Chung, profesor de Aeronáutica de Bren, División de Ingeniería y Ciencias Aplicadas (EAS) e investigador científico en JPL, que Caltech administra para la NASA. El proyecto es una colaboración entre los expertos en inteligencia artificial (AI) de Chung y Caltech, Anima Anandkumar, profesora de informática y ciencias matemáticas, y Yisong Yue, profesora asistente de informática y ciencias matemáticas.

Un documento que describe el Neural Lander se presentó en la Conferencia Internacional sobre Robótica y Automatización del Instituto de Ingenieros Eléctricos y Electrónicos (IEEE). Los coautores principales del artículo son los estudiantes graduados de Caltech Guanya Shi, cuya investigación de doctorado es supervisada conjuntamente por Chung y Yue, así como Xichen Shi y Michael O’Connell, que son estudiantes de doctorado en el Grupo de Control y Robótica Aeroespacial de Chung.

Las redes neuronales profundas (DNN) son sistemas de IA que se inspiran en sistemas biológicos como el cerebro. La parte «profunda» del nombre se refiere al hecho de que las entradas de datos se mueven a través de múltiples capas, cada una de las cuales procesa la información entrante de una manera diferente para descubrir detalles cada vez más complejos. Los DNN son capaces de aprendizaje automático, lo que los hace ideales para tareas repetitivas.

 

Para asegurarse de que el drone vuele suavemente bajo la guía del DNN, el equipo empleó una técnica conocida como normalización espectral, que suaviza las salidas de la red neuronal para que no realice predicciones muy variadas a medida que cambian las entradas y condiciones. Las mejoras en el aterrizaje se midieron al examinar la desviación de una trayectoria idealizada en el espacio 3D. Se realizaron tres tipos de pruebas: un aterrizaje vertical recto; un arco descendente de aterrizaje; y el vuelo en el que el avión no tripulado roza una superficie que se corta, como en el borde de una mesa, donde el efecto de la turbulencia del suelo variaría considerablemente.

El nuevo sistema reduce el error vertical en un 100 por ciento, lo que permite aterrizajes controlados y reduce la deriva lateral en hasta un 90 por ciento. En sus experimentos, el nuevo sistema logra un aterrizaje real en lugar de quedarse atrapado a unos 10 a 15 centímetros por encima del suelo, como suelen hacer los controladores de vuelo convencionales no modificados. Además, durante la prueba el Neural Lander produjo una transición mucho más suave cuando el dron hizo la transición de deslizarse sobre la mesa para volar en el espacio libre más allá del borde.

«Con menos errores, el Neural Lander es capaz de un aterrizaje más rápido y suave, y de deslizarse suavemente sobre la superficie del suelo», dice Yue. El nuevo sistema se probó en el aeródromo de tres pisos de CAST, que puede simular una variedad casi ilimitada de condiciones de viento en el exterior. Inaugurado en 2018, CAST es una instalación de 10.000 pies cuadrados donde los investigadores de EAS, JPL y la División de Ciencias Geológicas y Planetarias de Caltech se unen para crear la próxima generación de sistemas autónomos, mientras avanzan los campos de investigación de drones, exploración autónoma, y sistemas bioinspirados.

«Este esfuerzo interdisciplinario trae expertos de los sistemas de aprendizaje automático y control. Apenas hemos comenzado a explorar las ricas conexiones entre las dos áreas», dice Anandkumar.

Además de sus obvias aplicaciones comerciales, Chung y sus colegas han presentado una patente sobre el nuevo sistema. Éste podría ser crucial para los proyectos que actualmente se están desarrollando en CAST, incluido un transporte médico autónomo que podría aterrizar en lugares de difícil acceso. (como un tráfico bloqueado). «La importancia de poder aterrizar de forma rápida y sin problemas cuando se transporta a una persona lesionada no se puede exagerar», dice Morteza Gharib, Profesor de Aeronáutica e Ingeniería Bioinspirada; director de CAST; y uno de los principales investigadores del proyecto de ambulancia aérea.



Translatotron, el primer traductor simultáneo

La tecnología, elemento indispensable para romper las barreras, también idiomáticas. La evolución de los servicios basados en Inteligencia Artificial supera nuevos desafíos. Varias décadas después de desarrollar los primeros «convertidores» de audio, Google ha sido capaz de desarrollar un software que puede traducir la voz humana -de un idioma- a otro directamente sin necesidad de realizar ninguna conversión a texto.

Su nombre, sin embargo, suena a película de ciencia-ficción; Translatotron. No oculta sus intenciones porque está concebido para mejorar la relación entre el humano y la máquina, pero, como extensión, mejorar las comunicaciones entre personas igualando así sus condiciones (y limitaciones) idiomáticas. Un sistema que, en un futuro, puede dar pie a traductores automáticos como si se tratase de un teléfono móvil y que supone un nuevo paso en la traducción simultánea.

Esta herramienta combina diferentes tecnologías ya desarrolladas que empiezan, además, a formar parte de la jungla electrónica en la que reside el usuario. Tradicionalmente, estos sistemas eran independientes. Ahora, al separar la conversación en tres escenarios se pueden combinar. Así, el funcionamiento de Translatotron se basa en un solo proceso: en lugar de dividirlo en distintas fases como sucede en los sistemas de traducción actuales, que se apoyan en mecanismos de síntesis de voz a texto: reconocimiento de voz automático que transcriben la voz de origen como texto, los sistemas de traducción automática que convierten el texto transcrito al idioma de destino y, por último, la capacidad de sintetizar texto y voz para generar audio. Es decir, una traducción simultánea y sin apenas intermediarios, aunque no es perfecto: cada uno de estos pasos va arrastrando pequeños errores.

Google va más allá; ahora ha ideado el mecanismo para traducir de manera automática y realizar una traducción de voz a voz, con resultados muy precisos e, incluso, intentar «imitar» el habla de la persona. «Este sistema evita dividir la traducción en etapas separadas, con lo que aporta algunas ventajas sobre otras soluciones, incluido una mayor velocidad y evitando errores de composición entre el reconocimiento y la traducción, lo que facilita la retención de la voz del hablante original después de la traducción y un mejor manejo de palabras que no necesitan ser traducidas, por ejemplo, nombres propios», señalan en un comunicado fuentes del gigante de internet.

El proyecto, todavía en fase de pruebas, se basa en una red de secuencia a secuencia que procesa el audio de origen en espectrogramas -desgloses detallados de frecuencias del audio- y lo trata como un código de entrada, generando otros nuevos modelos de audio con contenido traducido para, posteriormente, convertir en idioma de destino. La gran aportación es que este proceso retiene el carácter de la voz original, por lo que la traducción, al final, no se realiza de forma robótica y enlatada sino intentando conservar algunos detalles del timbre de la voz, su color, la cadena e, incluso, el tono de la frase original.

Así, puede añadirse un mecanismo adicional que aprende las características del habla de una persona y que las codifica para lograr mantener su tono para utilizarlo posteriormente en la sintetización de la traducción de voz. En todo el proceso, la Inteligencia Artificial de Google utiliza objetivos multitarea para predecir los movimientos de la fuente, al mismo tiempo que genera los espectogramas de la traducción.La compañía ha expuesto, además, algunos logros alcanzados por este ingenio a través de varios clips de audio.



Un chip de I.A. supera a los robots y drones más impresionantes

En una reciente y deslumbrante mañana en California (EE.UU.), la investigadora del MIT Vivienne Sze subió a un pequeño escenario para realizar la que quizá haya sido presentación más desconcertante de su carrera. Dominaba el tema a la perfección. Debía hablar sobre los chips que se desarrollan en su laboratorio y de cómo iban a acercar el poder de la inteligencia artificial (IA) a una multitud de dispositivos con una potencia limitada sin tener que depender de los enormes centros de datos donde se realizan la mayoría de los cálculos de IA. Pero, tanto lo que vio en la conferencia como el público que acudió la hicieron reflexionar.

Hablamos de MARS, una conferencia de élite, solo para invitados, en la que los robots pasean (o vuelan) por un resort de lujo, mezclándose con famosos científicos y autores de ciencia ficción. Solo unos pocos investigadores fueron invitados a dar charlas técnicas, y las sesiones tienden a ser tanto inspiradoras como esclarecedoras. El público estaba compuesto por unos 100 investigadores, directores ejecutivos y algunos de los empresarios más importantes del mundo. El maestro de ceremonias de MARS fue el fundador y presidente de Amazon, Jeff Bezos, que estaba sentado en la primera fila. «Se podría decir que era un público de muy alto nivel», recuerda Sze con una sonrisa.

Otros ponentes de MARS presentaron robots que cortan al estilo kárate, drones que aletean como si fueran grandes insectos extrañamente silenciosos, e incluso proyectos para crear colonias marcianas. Ante esta competencia, los chips de Sze podían parecer más modestos. A simple vista, no se distinguen de los chips que hay dentro de cualquier dispositivo electrónico. Sin embargo, sus microprocesadores eran indudablemente mucho más importantes que cualquier otra cosa que hubo en la conferencia.

Nuevas capacidades

Los nuevos diseños de chips, como los que se desarrollan en el laboratorio de Sze, pueden ser cruciales para el futuro progreso de la IA, y los drones y robots que se dejaron ver en MARS. Hasta ahora, el software de IA se ejecutaba principalmente en unidades de procesamiento gráfico (GPU, por sus siglas en inglés), pero los nuevos diseños especializados de hardware podrían lograr que los algoritmos de IA sean más potentes, lo que abriría el camino a unas nuevas aplicaciones. Los nuevos chips de inteligencia artificial podrían masificar los robots de almacén y permitir que los teléfonos inteligentes crean escenarios fotorrealistas de realidad aumentada.

Los diseños de los chips de Sze son muy eficientes y flexibles, algo crucial para un campo que evoluciona tan rápido como la IA (ver ¿Quién ganará la batalla de los chips si el sector de la IA no para de cambiar?). En concreto, están diseñados para exprimir aún más potencial de los algoritmos de aprendizaje profundo que ya han revolucionado el mundo. Este proceso incluso podría lograr que este tipo de programas evolucionen por sí solos. Sze detalla: «Dado que la ley de Moore se ha ralentizado, necesitamos un nuevo hardware».

Esta ley choca cada vez más con los límites físicos de los componentes de ingeniería a escala atómica. Y está despertando un creciente interés en arquitecturas alternativas y nuevos enfoques de computación.

Este interés ha llegado incluso al Gobierno de EE. UU., que además de mantener su liderazgo en el diseño de chips en general, confía en los microprocesadores especializados para arrebatarle a China el trono de la IA. De hecho, los propios chips de Sze se están creando gracias a fondos de un programa de DARPA destinado a ayudar a desarrollar nuevos diseños de chips de IA (ver Así es la estrategia de EE.UU. para quitarle a China el trono de la IA).

Pero el impulso en la innovación de la fabricación de chips procede principalmente del aprendizaje profundo, una técnica muy poderosa de enseñar a las máquinas a realizar tareas útiles. En vez de dar a un ordenador un conjunto de reglas a seguir, una máquina se programa a sí misma básicamente. Los datos de entrenamiento se introducen en una gran red neuronal artificial simulada, que luego se ajusta para que produzca el resultado deseado. Con suficiente entrenamiento, un sistema de aprendizaje profundo puede encontrar patrones sutiles y abstractos en los datos. La técnica se aplica a una creciente variedad de tareas prácticas, desde el reconocimiento facial en los teléfonos inteligentes hasta la predicción de enfermedades a partir de imágenes médicas.

La carrera de los chips de IA

El aprendizaje profundo no depende tanto de la ley de Moore. Las redes neuronales ejecutan muchos cálculos matemáticos en paralelo, un enfoque para el que los GPU de videojuegos resultan mucho más efectivos dado que realizan computación paralela para renderizar imágenes en 3D. Pero los microchips diseñados específicamente para el aprendizaje profundo deberían ser aún más potentes.

El potencial de las nuevas arquitecturas de chips para mejorar la inteligencia artificial ha impulsado la actividad empresarial a un nivel que la industria de los chips no ha visto en décadas (ver La nueva carrera de los chips de silicio se libra en el cuadrilátero de la inteligencia artificial y China da la vuelta al marcador de los chips gracias a la IA). Las grandes empresas tecnológicas que quieren aprovechar y comercializar la inteligencia artificial, como Google, Microsoft y (sí) Amazon, están trabajando en sus propios chips de aprendizaje profundo. Pero también hay muchas start-ups trabajando en este campo. De hecho, el analista de microchips en la empresa de analistas Linley Group Mike Delmer considera que «es imposible hacer un seguimiento de todas las compañías que están apareciendo en el espacio del chip de IA». Y añade: «No bromeo cuando digo que descubrimos un nuevo chip casi cada semana«.

La verdadera oportunidad, según Sze, no reside en construir los chips de aprendizaje profundo más poderosos. La eficiencia energética también es importante porque la IA también debe funcionar más allá de los grandes centros de datos, lo que significa que los microprocesadores deberían ser capaces de funcionar con la energía disponible en el dispositivo. Esto se conoce como operar «al límite».




«La IA estará en todas partes, así que es importante encontrar formas de aumentar la eficiencia energética«, afirma el vicepresidente del grupo de productos de inteligencia artificial de Intel, Naveen Rao. Por ejemplo, el hardware de Sze es más eficiente, en parte, porque reduce físicamente el atasco entre el lugar en el que almacenan los datos y aquel en el que se analizan, pero también porque utiliza esquemas inteligentes para reutilizar los datos. Antes de unirse al MIT, Sze fue pionera en este enfoque para mejorar la eficiencia de la compresión de vídeo en Texas Instruments.

En un campo que avanza tan rápido, como es el aprendizaje profundo, el desafío para aquellos que trabajan con chips de IA consiste en asegurarse de que sean lo suficientemente flexibles para adaptarse a cualquier aplicación. Es fácil diseñar un chip súper eficiente capaz de hacer solo una tarea, pero ese tipo de producto se volverá obsoleto rápidamente.

El chip de Sze se llama Eyeriss. Desarrollado en colaboración con el científico investigador de Nvidia y profesor del MIT, Joel Emer, fue probado junto con varios procesadores estándar para ver cómo manejaba diferentes algoritmos de aprendizaje profundo. Equilibrando la eficiencia con la flexibilidad, el rendimiento del nuevo chip alcanza resulta entre 10 e incluso 1.000 veces más eficiente que el hardware existente, según un artículo publicado el año pasado.

Foto: Los investigadores del MIT Sertac Karaman y Vivienne Sze desarrollaron el nuevo chip.

Los chips de IA más simples ya están generando un gran impacto. Los teléfonos inteligentes de gama alta ya incluyen chips optimizados para ejecutar algoritmos de aprendizaje profundo para el reconocimiento de imagen y voz. Los chips más eficientes podrían permitir que estos dispositivos ejecuten un código de IA más potente con mejores capacidades. Los coches autónomos también necesitan poderosos chips de IA, ya que la mayoría de los prototipos dependen actualmente de un montón de ordenadores dentro del maletero.

Rao sostiene que los chips del MIT parecen prometedores, pero son muchos los factores que determinarán si una nueva arquitectura de hardware tendrá éxito. Uno de los más importantes, según él, es el desarrollo de software que permita a los programadores ejecutar código en él. «Hacer algo útil para aquellos que lo elaboran es probablemente el mayor obstáculo para la adopción», explica.

De hecho, el laboratorio de Sze también explora formas de diseñar software para explotar mejor las propiedades de los chips informáticos existentes. Y este trabajo se extiende más allá del aprendizaje profundo. Junto con el investigador del Departamento de Aeronáutica y Astronáutica del MIT Sertac Karaman, Sze desarrolló un chip de bajo consumo llamado Navion que realiza mapas en 3D y navegación de manera increíblemente eficiente, lo que permite integrarlo en un pequeño dron. Para este esfuerzo fue crucial diseñar un chip capaz de explotar el comportamiento de los algoritmos de navegación y crear un algoritmo que puediera aprovechar al máximo este chip personalizado. Junto al desarrollo del aprendizaje profundo, Navion refleja la forma en la que el software y el hardware de IA empiezan a evolucionar en simbiosis.

Los chips de Sze quizás no son tan llamativos como un dron con alas, pero el hecho de que fueran presentados en MARS refleja lo importante que será su tecnología, y la innovación del silicio en general, para el futuro de la IA. Después de su presentación, Sze afirma que algunos de los otros ponentes expresaron su interés en conocer más. «La gente encontró muchos casos importantes de aplicación», concluye. En otras palabras, podemos esperar que en la próxima conferencia de MARS los robots y drones lleven dentro algo bastante más especial.

Artículos relacionados:

Un robot que procura moverse tan bien como una hormiga
Chips de potencia ultra baja ayudan a hacer robots pequeños más capaces
Chip de cómputo basado en luz funciona similar a las neuronas



Control de motores de CC por Ancho de Pulso (PWM)

La Regulación por Ancho de Pulso de un motor de CC está basada en el hecho de que si se recorta la CC de alimentación en forma de una onda cuadrada, la energía que recibe el motor disminuirá de manera proporcional a la relación entre la parte alta (habilita corriente) y baja (cero corriente) del ciclo de la onda cuadrada. Controlando esta relación se logra variar la velocidad del motor de una manera bastante aceptable.

El circuito que se ve a continuación es un ejemplo de un control de Regulación de Ancho de Pulso (PWM, Pulse-Width-Modulated en inglés), que se podría adaptar al circuito de un Puente H (Puente H: Circuito para controlar motores de corriente continua. El nombre se refiere a la posición en que quedan los transistores en el diagrama del circuito).

El primer circuito —con el MOSFET de potencia BUZ11— permite controlar motores medianos y grandes, hasta 10 A de corriente. El segundo circuito —con el transistor 2N2222A— es para motores pequeños, que produzcan una carga de hasta 800 mA.

El que sigue es un circuito genérico de generación de pulsos que se puede utilizar en aquellos lugares donde sea necesario un pulso digital no demasiado preciso. Cambiando los valores de R1 y R2 se ajusta la frecuencia básica. El potenciómetro regula el ancho de pulso.

A continuación, el circuito básico y la fórmula para calcular los anchos de pulso generados por el integrado 555.

Completando la información básica, debemos saber que la mayoría de los microcontroladores poseen generadores de ancho de pulso modulado para control de velocidad de motores y otros controles de potencia digitales, como el brillo de un led o de una lámpara. En las salidas digitales del Arduino UNO se identifica la capacidad PWM con un símbolo ~. En el Arduino UNO los pines 3, 5, 6, 9, 10 y 11 tienen capacidad de salida de pulsos digitales con ancho modulado:

En estos módulos PWM de los microcontroladores, la proporción de tiempo que está encendida la señal respecto al total del ciclo se denomina “Duty cycle”, y generalmente se expresa en tanto por ciento.

La señal promedio es el producto de la tensión máxima y el valor Duty Cycle. La expresión para el cálculo es:

De forma similar, tenemos que

La «salidas analógicas» NO lo son

Debemos tener presente que en una salida PWM el valor de tensión en realidad es Vcc. Por ejemplo, si estamos alimentando un dispositivo que requiere 3V, y usamos una señal pulsada, en realidad estaremos suministrando 5V durante un 60% del tiempo y 0V durante el 40%. Pero si el dispositivo tiene alguna característica por la cual soporta como máximo 3V, podemos dañarlo si lo alimentamos mediante una señal PWM de estas características.

La señal pulsada es buena para emular una señal analógica en muchas aplicaciones. Podemos, por ejemplo, variar la intensidad luminosa en un LED. Éste realmente se enciende y apaga varias veces por segundo, pero el parpadeo es tan rápido que el ojo no lo aprecia. El efecto percibido es que el LED brilla con menor intensidad.

Otro ejemplo es que al variar la velocidad de un motor DC con un PWM, en la mayoría de los casos la inercia del motor se encargará de que el efecto de los cortes de señal sean despreciables. No obstante, dependiendo de la frecuencia utilizada, podemos notar vibraciones o ruidos, lo que implica que deberemos variar la frecuencia del ciclo PWM.

También es importante tener en cuenta aquellos efectos que la rápida conexión y desconexión de la señal pulsada pueden producir en el dispositivo que se alimenta. En el caso de cargas inductivas (motores, relés, o electroimanes), la desconexión producirá una generación de contracorriente que puede dañar la salida digital, o al dispositivo, por lo que será necesario implementar una protección.

Control de ancho de pulso en Arduino

■ En Arduino Uno, Mini y Nano existen 6 salidas PWM de 8 bits en los pines 3, 5, 6, 9, 10 y 11.

■ En Arduino Mega existen 15 salidas PWM de 8 bits en los pines 2 a 13 y 44 a 46

■ En Arduino Due existen 13 salidas PWM de 8 bits en los pins 2 a 13. Adicionalmente, esta placa incorpora dos salidas analógicas con resolución de 12 bits (4096 niveles)

Una resolución de 8 bits en una salida PWM significa que tiene 256 niveles. Es decir, el Duty cycle se divide en 256 posiciones posibles.





Timers en Arduino

Las funciones PWM que son controladas por hardware emplean los módulos Timer para generar la onda de salida. Cada Timer queda afectado a 2 o 3 salidas PWM.

Cada salida conectada a un mismo temporizador comparte la misma frecuencia, aunque pueden tener distintos Duty cycles, dependiendo de un valor en su registro de comparación.

En el Arduino Uno, Mini y Nano el uso de timers es:

■ El Timer0 controla las salidas PWM 5 y 6. El Timer1 controla las salidas PWM 9 y 10. El Timer2 controla las salidas PWM 3 y 11.

En el Arduino Mega el uso es:

■ El Timer0 controla las salidas PWM 4 y 13. El Timer1 controla las salidas PWM 11 y 12. El Timer2 controla las salidas PWM 9 y 10. El Timer3 controla las salidas PWM 2, 3 y 5. El Timer4 controla las salidas PWM 6, 7 y 8.
El Timer5 controla las salidas PWM 44, 45 y 46.

Frecuencia de ciclo de PWM

La frecuencia de cada PWM depende de las características del temporizador al que está conectado, y de un registro de pre-escala, que divide el tiempo por un número entero. La frecuencia de los PWM se puede modificar cambiando la pre-escala de los Timer correspondientes.

Arduino Uno, Mini y Nano disponen de tres temporizadores.

■ Timer0, con una frecuencia de 62.500 Hz, y pre-escala de 1, 8, 64, 256 y 1024.
■ Timer1, con una frecuencia de 31.250 Hz, y pre-escala de 1, 8, 64, 256, y 1024.
■ Timer2, con una frecuencia de 31.250 Hz, y pre-escala de 1, 8, 32, 64, 128, 256, y 1024.

El Arduino Mega añade tres temporizadores adicionales.

Timer3, 4 y 5, con una frecuencia de 31.250 Hz, y pre-escala de 1, 8, 64, 256 y 1024.

Por esto, la frecuencia estándar para las salidas PWM en Arduino Uno, Mini y Nano es de 490 Hz para todos los pines, excepto para el 5 y 6 cuya frecuencia es de 980 Hz. En el Arduino Mega, la frecuencia estándar es de 490 Hz para todos los pines, excepto para el 4 y 13 cuya frecuencia es de 980 Hz

Incompatibilidades:

El uso de los Timer no es exclusivo para las salidas PWM: es compartido con otras funciones. Emplear funciones que requieren el uso de estos Timer supondrá que no podremos emplear al mismo tiempo alguno de los pines PWM.

Algunas de las incompatibilidades más típicas:

1. La librería servo hace uso intensivo de temporizadores por lo que, mientras la estemos usando, no podremos usar algunas de las salidas PWM.

En el caso de Arduino Uno, Mini y Nano, la librería servo usa el Timer 1, por lo que no podremos usar los pines 9 y 10 mientras tengamos un servo en el crcuito.

En el caso de Arduino Mega, dependerá de la cantidad de servos que empleemos.

Si usamos menos de 12 servos el Mega utiliza el Timer 5, por lo que no se pueden usar para PWM los pines 44, 45 y 46. Para 24 servos usa los Timer 1 y 5, por lo que no se pueden usar para PWM los pines 11, 12, 44, 45 y 45. Para 36 servos usa los Timer 1, 3 y 5, impidiendo usar para PWM los pines 2, 3, 5, 11, 12, 44, 45, 46. Para 48 servos, usa los Timer 1, 3, 4 y 5, quedando sin pines PWM disponibles.

2. SPI: en Arduino Uno, Mini y Nano, el pin 11 se emplea también para la función MOSI de la comunicación SPI. Por lo cual no podremos usar ambas funciones de ese pin en forma simultánea. Arduino Mega no tiene este problema, ya que se conectan a pines distintos.

3. La función Tone emplea el Timer 2, por lo que no podremos usar los pines 3 y 11 para PWM. En Arduino Mega no se pueden usar los pines 9 y 10.

En todos los casos, todo se debe al uso de bibliotecas (librerías) de funciones. Programando en muy bajo nivel, es posible lograr mejores prestaciones. Pero no es una tarea fácil, ya que requiere mucha experiencia.

Artículos relacionados:
Uso de la placa L298N para motores de CC
Puente H: Placa controladora de motores L9110S
Guía rápida de placas de control de motores
Manejo de potencia para motores con el integrado L293D
Control de motores de CC por Ancho de Pulso (PWM)


Chip de cómputo basado en luz funciona similar a las neuronas

¿Una tecnología que funciona como un cerebro? En estos tiempos de inteligencia artificial, esto ya no parece tan inverosímil; por ejemplo cuando un teléfono móvil puede reconocer caras o idiomas. Sin embargo, con aplicaciones más complejas, las computadoras aún se enfrentan rápidamente a sus propias limitaciones. Una de las razones de esto es que una computadora tradicionalmente tiene unidades separadas de memoria y procesador, cuya consecuencia es que todos los datos deben enviarse entre los dos. En este sentido, el cerebro humano está muy por delante incluso de las computadoras más modernas porque procesa y almacena información en el mismo lugar, en las sinapsis o conexiones entre neuronas, de las cuales hay trillones en el cerebro. Un equipo internacional de investigadores de las Universidades de Münster (Alemania), Oxford y Exeter (ambos del Reino Unido) han tenido éxito en el desarrollo de una pieza de hardware que podría abrir camino para crear computadoras que se parezcan al cerebro humano. Los científicos lograron producir un chip que contiene una red de neuronas artificiales que funciona con la luz y puede imitar el comportamiento de las neuronas y sus sinapsis.

Los investigadores pudieron demostrar que una red neurosináptica óptica es capaz de «aprender» la información y usarla como base para calcular y reconocer patrones, al igual que un cerebro. Como el sistema funciona solo con luz y no con electrones tradicionales, puede procesar datos muchas veces más rápido. «Este sistema fotónico integrado es un hito experimental», dice el profesor Wolfram Pernice de la Universidad de Münster y socio principal del estudio. «El abordaje podría usarse más adelante en muchos campos diferentes para evaluar patrones en grandes cantidades de datos, por ejemplo, en diagnósticos médicos». El estudio se publica en el último número de la revista «Nature».

La historia en detalle – financiación y método utilizado

La mayoría de los abordajes existentes relacionados con las llamadas redes neuromórficas se basan en la electrónica, mientras que los sistemas ópticos, en los que se utilizan fotones, es decir, partículas de luz, aún están en su infancia. El principio que los científicos alemanes y británicos han presentado ahora funciona de la siguiente manera: las guías de ondas ópticas que pueden transmitir luz y pueden fabricarse en microchips ópticos se han integrado con los llamados materiales de cambio de fase, que ya se encuentran en medios de almacenamiento como el DVD regrabable. Estos materiales de cambio de fase se caracterizan por el hecho de que cambian dramáticamente sus propiedades ópticas dependiendo de si son cristalinos, cuando sus átomos se organizan de manera regular, o amorfos, cuando sus átomos se organizan de manera irregular. Este cambio de fase puede ser activado por la luz si un láser calienta el material. «Debido a que el material reacciona con tanta fuerza y cambia sus propiedades dramáticamente, es muy adecuado para imitar las sinapsis y la transferencia de impulsos entre dos neuronas», dice el autor principal Johannes Feldmann, quien realizó muchos de los experimentos como parte de su tesis doctoral en la universidad de Munster.

En su estudio, los científicos lograron por primera vez fusionar muchos materiales de cambio de fase nanoestructurados en una red neurosináptica. Los investigadores desarrollaron un chip con cuatro neuronas artificiales y un total de 60 sinapsis. La estructura del chip, que consta de diferentes capas, se basó en la llamada tecnología multiplex de división de longitud de onda, que es un proceso en el que la luz se transmite a través de diferentes canales dentro del nanocircuito óptico.

Para probar en qué medida puede reconocer patrones el sistema, los investigadores lo «alimentaron» con información en forma de pulsos de luz, utilizando dos algoritmos diferentes de aprendizaje automático. En este proceso, un sistema artificial «aprende» de ejemplos y puede, en última instancia, generalizarlos. En el caso de los dos algoritmos utilizados, tanto en el llamado aprendizaje supervisado como en el no supervisado, la red artificial pudo, en última instancia, y sobre la base de determinados patrones de luz, reconocer un patrón que se estaba buscando, uno de los cuales era cuatro letras consecutivas.

«Nuestro sistema nos ha permitido dar un paso importante hacia la creación de hardware para computadoras que se comporta de manera similar a las neuronas y las sinapsis en el cerebro, y que también puede trabajar en tareas del mundo real», dice Wolfram Pernice. «Al trabajar con fotones en lugar de electrones, podemos aprovechar al máximo el potencial conocido de las tecnologías ópticas, no solo para transferir datos, como ha sido hasta ahora, sino también para procesar y almacenarlos en un solo lugar», agrega el coautor, Prof. Harish Bhaskaran, de la Universidad de Oxford.




Un ejemplo muy específico es que, con la ayuda de dicho hardware, se podrían identificar automáticamente las células cancerosas. Sin embargo, habrá que trabajar bastante para que estas aplicaciones se conviertan en realidad. Los investigadores necesitan aumentar la cantidad de neuronas artificiales y sinapsis, y aumentar la profundidad de las redes neuronales. Esto se puede hacer, por ejemplo, con chips ópticos fabricados con tecnología de silicio. «Este paso se debe tomar en el proyecto conjunto ‘Fun-COMP’ de la UE mediante el uso del procesamiento de fundición para la producción de nanochips», dice el coautor y líder del proyecto Fun-COMP, el profesor C. David Wright de la Universidad de Exeter.

Este trabajo de colaboración fue financiado por la DFG de Alemania, la EPSRC del Reino Unido y el ERC de la Comisión Europea, y los programas H2020 (el proyecto Fun-COMP).

________________________________________

• Fuente de la historia: Materiales proporcionados por la Universidad de Münster. Referencia de la publicación: J. Feldmann et al. “All-optical spiking neurosynaptic networks with self-learning capabilities” (Redes neurosinápticas totalmente ópticas con capacidades de autoaprendizaje). Nature, 2019 DOI: 10.1038 / s41586-019-1157-8. Universidad de Münster. «Step towards light-based, brain-like computing chip» (Paso hacia un chip de computación similar a un cerebro basado en la luz). ScienceDaily, 8 de mayo de 2019.