Archivo de la etiqueta: Experimentos

Pez robot se mueve alimentado con “sangre” falsa

La historia comienza a centenares de metros de altura con las aves migratorias, y termina con un pez robótico nadando en el agua debajo. Para prepararse para sus viajes, las aves engordan mucho, hasta casi duplicar su peso, lo que las convierte en baterías emplumadas. Queman esa reserva de energía para impulsar sus alas a lo largo de muchos días y muchos kilómetros, y para evitar morir de hambre y congelarse. Finalmente, llegan extenuadas a sus destinos.

Una buena idea, pensaron los ingenieros de Cornell y de la Universidad de Pennsylvania, para un nuevo sistema de alimentación de potencia para máquinas. Les hizo pensar: la grasa es una batería genial, pero no es muy factible replicarla en un robot. ¿Pero… y la sangre? En un ser humano, la sangre distribuye oxígeno y energía para las células en todo el cuerpo. Y algunos robots, ya se mueven en base a fluidos, en forma de hidráulica. Entonces, ¿por qué no modificar ese fluido para transportar energía, ya que nuestra sangre alimenta nuestros músculos?

A lo que han llegado no es un ave robot (demasiado complicada y con intensa necesidad de energía) sino a un pez león robot que utiliza un sistema vascular rudimentario y «sangre» para energizarse y alimentar hidráulicamente sus aletas. Esta tecnología aún está en sus primeros días, y de hecho este pez es extremadamente lento, pero quizás algunas máquinas del mañana podrían deshacerse de las baterías y los cables y alimentarse como organismos biológicos.

Inflexiblemente, los robots actuales están segmentados. Tienen una batería de iones de litio, que distribuye la energía por medio de cables a los motores de sus extremidades, a los que se conoce como actuadores. Este nuevo pez león robótico tiene baterías, pero están esparcidas por todo su cuerpo y funcionan en conjunto con dos bombas, una para alimentar las aletas pectorales y otra para la cola. Juntas, las baterías y las bombas actúan más como corazones biológicos que como una batería de ion litio en un robot tradicional.

El primer componente es la «sangre», en esencia un fluido hidráulico cargado con iones disueltos, lo que le da potencial químico para alimentar la electrónica. «El fluido hidráulico transmite fuerza, y solo fuerza», dice Robert Shepherd, el robotista de Cornell, coautor de un nuevo artículo en Nature que describe el sistema. «En nuestro fluido, estamos transmitiendo fuerza y estamos transmitiendo energía eléctrica».




Este líquido cargado fluye a través de las células de la batería en el abdomen y las aletas del pez. Cada celda tiene dos piezas de metal opuestas: un cátodo y un ánodo. A medida que el fluido fluye más allá de estos, crea un desequilibrio de carga o voltaje que hace que los electrones fluyan a través de la electrónica que alimenta las dos bombas. Estos a su vez mantienen el bombeo del fluido. Finalmente las celdas de la batería se agotarán, ya que el líquido pierde iones y dejará de circular. En ese momento es posible recargar el líquido para que los peces sigan funcionando. «En realidad, podrían drenar el fluido e inyectar más fluido cargado», dice Shepherd, «algo así como llenar su tanque de combustible en la estación de servicio».

El fluido, entonces, energiza a los peces. Pero también actúa como un fluido hidráulico tradicional, ya que transmite fuerza a la cola y las aletas pectorales. Cuando las bombas empujan el fluido hacia las aletas, se doblan hacia atrás y hacia delante para impulsar el robot. Las aletas pectorales funcionan de la misma manera para guiar a los peces hacia la izquierda y hacia la derecha.

Esto no mueve al robot de manera particularmente rápida: los peces pueden cubrir aproximadamente 1,5 veces la longitud de su cuerpo por minuto. «Definitivamente se lo comerían si estuviera en el océano», dice Shepherd.

Pero la velocidad del robot mejorará, ya que Shepherd y su equipo pueden aumentar el área de superficie de los ánodos y cátodos para mejorar la densidad de potencia. A diferencia de un robot tradicional de cuerpo duro, pueden llenar con celdas de batería donde lo deseen y dejar que la forma blanda del robot se adapte a los componentes adicionales. De este modo, se construye un sistema circulatorio robótico extendido: bombas y baterías que transportan el líquido por todo el robot.

Este sistema tiene algunas limitaciones importantes, especialmente teniendo en cuenta el estado avanzado de la tecnología de iones de litio. «La densidad de potencia es de 30 a 150 veces menos en lo que se observa en comparación con la capacidad de una batería de ión litio», dice el robotista del MIT CSAIL Robert Katzschmann, cuyo pez robot utiliza una batería de ión litio tradicional. Eso significa que el robot de Katzschmann puede moverse 20 veces más rápido que este nuevo pez.

Además, la naturaleza distribuida de este nuevo sistema de energía en los peces implica que no es posible cambiar con facilidad una batería sobre la marcha. «Cada vez que iba al océano, simplemente reemplazaba la batería por una nueva, así que no tengo que esperar para recargar mi prototipo», dice Katzschmann.

Aún así, podría haber un lugar para esta nueva visión de la robótica, junto con los sistemas tradicionales de iones de litio. Hay un montón de peces en el mar, después de todo.



Un robot del MIT monitorea los bíceps para aprender a manipular cosas

Aprender a moverse: los investigadores del MIT han creado un robot que monitorea de cerca nuestros bíceps mientras levantamos y movemos las cosas. Pero no se limita a admirar nuestros músculos, la idea consiste en desarrollar un sistema capaz de colaborar con las personas de forma más efectiva.

Aprender a controlar sus músculos: el robot, bautizado como RoboRaise, monitorea los músculos de una persona a través de unos sensores electromiográficos a los que está conectada. El aprendizaje automático compara las señales captadas por esos sensores con una representación del movimiento del brazo que hace la persona. Con esta información, el robot aprende repetir esa acción.

Aprender a trabajar en equipo: la mayoría de los robots de trabajo son tan torpes y peligrosos que es necesario ponerlos a trabajar aislados de los humanos, pero existe un creciente interés en que los robots colaboren con los trabajadores humanos. Este concepto, conocido como cobot, utiliza los avances en sensores y en algoritmos informáticos para volverlos más seguros y más inteligentes.

A observar cuidadosamente: el enfoque de RoboRaise resulta fascinante, y muestra cómo, en teoría, los robots podrían captar señales mucho más sutiles sobre el comportamiento de una persona. Esto podría crear máquinas que se coordinen mejor con nuestras acciones e intenciones.


Las personas saben instintivamente cómo trabajar juntas cuando llega el momento de levantar algo para lo que son necesarias dos personas. Las personas coordinan sus movimientos y trabajan para asegurarse de que cada lado de lo que se está llevando se mantenga a la misma altura. Si bien las tareas de este tipo son naturales para un humano, para los robots no es nada natural.
 
Los robots tienen que estar entrenados para trabajar bien con un humano y, por lo general, eso significa enseñar comandos de voz al robot de manera similar a cómo funciona un asistente de voz como Siri. Los investigadores del MIT han desarrollado un robot que puede colaborar con humanos sin necesidad de usar comandos hablados. El sistema robótico puede coordinar movimientos al monitorear sus movimientos musculares.

El sistema del MIT se llama RoboRaise, y requiere que los sensores se apliquen a los bíceps y tríceps del usuario para controlar su actividad muscular. Cuando los algoritmos detectan cambios en el nivel del brazo de la persona junto con gestos discretos con las manos hacia arriba y hacia abajo, el usuario puede hacer movimientos más finos.




El equipo pudo usar su sistema para tareas relacionadas con recoger cosas y ensamblar componentes simulados de aviones. El equipo dice que cuando el usuario y el robot trabajaron en estas tareas, aquel pudo controlar el robot a unos centímetros de la altura deseada. El sistema fue más preciso cuando se utilizaron gestos, respondiendo correctamente a aproximadamente el 70% de todos ellos.

Uno de los estudiantes del proyecto dice que puede imaginar a personas usando RoboRaise para fabricar, construir y ayudar en la casa. La nueva tecnología se basa en la tecnología anterior desarrollada en MIT, que permite a los usuarios corregir errores del robot con ondas cerebrales y gestos con las manos.

El equipo quiere desarrollar un sistema de asistencia robótica en el que el robot se adapte a lo humano, no al revés. El usuario puede comenzar a usar el robot rápidamente con una calibración mínima después de que los sensores están en su lugar.

Relacionados:
Guante lleno de sensores aprende las señales del tacto humano
Logran que los robots rastreen objetos en movimiento con una precisión sin precedentes
Piernas robóticas que se basan en la evolución animal para aprender a caminar
Creando robots que pueden ir a donde nosotros vamos
Una prótesis que restaura la sensación de dónde está tu mano



Logran que catéter robótico ingrese por sí solo al corazón palpitante de cerdo vivo

El sistema de senseo del dispositivo fue inspirado por la forma en que las cucarachas se mueven a lo largo de los túneles.

Operar dentro de un corazón que late es un procedimiento complejo y delicado que requiere cirujanos expertos. El personal médico generalmente utiliza joysticks de control y una combinación de rayos X o ultrasonido para guiar con cuidado los catéteres a través del cuerpo.

Ahora, por primera vez, un catéter robótico ha sido capaz de navegar de forma autónoma dentro de un corazón para ayudar a llevar a cabo un procedimiento particularmente complejo. El dispositivo, que se inspiró en la forma en que ciertos animales aprenden sobre su entorno, se utilizó para ayudar a los cirujanos a cerrar las hemorragias en los corazones de cinco cerdos vivos.

«Las ratas usan bigotes para palpar a lo largo de la pared, los humanos sienten su camino y las cucarachas usan sus antenas», dice Pierre Dupont en la Escuela de Medicina de Harvard, quien dirigió el nuevo estudio publicado en Science Robotics. «Del mismo modo, este dispositivo usa sensores táctiles para elabora dónde está, y dónde ir a continuación, basado en un mapa del corazón «.

El dispositivo tiene 8 mm de ancho, con una cámara y una luz LED en su extremo que funciona como un sensor óptico y táctil combinado. Se usó un algoritmo de aprendizaje automático que se entrenó en alrededor de 2000 imágenes de tejido cardíaco para guiarlo a medida que se movía. El sensor táctil palpa periódicamente el tejido del corazón mientras se mueve, lo que ayuda a saber dónde está y asegurándose de no dañar el tejido.




Durante el experimento, el catéter navegó a la ubicación correcta el 95% del tiempo de los 83 ensayos en cinco cerdos. Esta es una tasa de éxito similar a la de un clínico con experiencia, y el procedimiento no dejó hematomas ni daños en los tejidos, según el equipo de investigación. Una vez en posición, los cirujanos tomaron el control y llevaron a cabo el procedimiento para reparar la hemorragia. Aunque han estado disponibles catéteres robóticos durante algunos años, este es el primero que ha podido encontrar su camino sin ayuda humana.

La idea es que, un día, esa tecnología podría liberar a los cirujanos para concentrarse en otras tareas o ayudar al personal médico menos experimentado a realizar procedimientos más complejos. La tecnología podría ser reutilizada para su uso en humanos dentro de cinco años, dice Dupont.

Artículo original:
Technology Review
Science Robotics



Investigadores belgas muestran cómo esconderse de la vigilancia con cámaras de IA

El software de reconocimiento de imágenes con aprendizaje automático puede ser engañado con una impresión a color.

La tecnología de video controlada por Inteligencia Artificial (IA) se está volviendo ubicua, rastreando nuestras caras y cuerpos en comercios, oficinas y espacios públicos.

En algunos países, la tecnología constituye un nuevo y poderoso instrumento de vigilancia policial y gubernamental.

Afortunadamente, como algunos investigadores de la universidad belga KU Leuven han demostrado recientemente, a menudo es posible que alguien se esconda de un sistema de video con IA con la ayuda de una simple impresión en color.

¿Quien lo dijo?

Los investigadores demostraron que la imagen que diseñaron puede esconder a una persona completa de un sistema de visión computarizado controlado por IA. Lo demostraron en un popular sistema de reconocimiento de objetos de código abierto llamado YoLo v2.

Esconderse

El truco podría permitir que los delincuentes se escondan de las cámaras de seguridad, u ofrecer a los disidentes una manera de esquivar el escrutinio del gobierno. «Lo que nuestro trabajo demuestra es que es posible eludir los sistemas de vigilancia de cámaras con parches ‘adversarios’», dice Wiebe Van Ranst, uno de los autores.

Piérdete

Van Ranst dice que no debería ser demasiado difícil adaptar la orientación del diseño de los sistemas de videovigilancia estándar.

“En este momento también necesitamos saber qué detector está en uso. «Lo que nos gustaría hacer en el futuro es generar un parche que funcione con varios detectores al mismo tiempo», dijo a MIT Technology Review. «Si esto funciona, hay muchas posibilidades de que el parche también funcione en el detector que está en uso en el sistema de vigilancia».




Misión de tontos

El engaño demostrado por el equipo belga explota lo que se conoce como aprendizaje automático adversarial. La mayoría de la visión por computador se basa en entrenar una red neuronal (convolucional) para reconocer diferentes cosas al proporcionarle ejemplos y ajustar sus parámetros hasta que clasifique los objetos correctamente.

Al alimentar ejemplos en una red neuronal profunda entrenada y monitorear la salida, es posible inferir qué tipos de imágenes confunden o engañan al sistema.

Ojos en todas partes

El trabajo es importante porque cada vez se encuentra más IA en las cámaras y el software de vigilancia habitual.

Incluso se está utilizando para obviar la necesidad de una línea de pago en algunas comercios experimentales, incluidos los operados por Amazon.

En China, la tecnología está emergiendo como un nuevo y poderoso medio para atrapar delincuentes. Y, lo que es más preocupante, también se utiliza mundialmente para rastrear a ciertos grupos étnicos.

Artículo original: MIT Technology Review, 23 de abril de 2019

Artículos Relacionados:

Logran que los robots rastreen objetos en movimiento con una precisión sin precedentes

Dando a los vehículos autónomos una “visión eléctrica” más aguda

Robots: Visión estereoscópica en tiempo real por medio de una cámara única

Ver a través de los ojos de un robot ayuda a personas con grandes deficiencias motoras



Los ingenieros crean material «similar a la vida», con metabolismo artificial

Como material genético, el ADN es responsable de toda la vida conocida. Pero el ADN también es un polímero. Aprovechando la naturaleza única de la molécula, los ingenieros de Cornell han creado máquinas simples construidas con biomateriales con propiedades de seres vivos.

Con el uso de lo que denominan materiales DASH (DNA-based Assembly and Synthesis of Hierarchical materials, Ensamblaje y Síntesis de Jerarquías a base de ADN), los ingenieros de Cornell construyeron un material de ADN con capacidades de metabolismo, además del autoensamblaje y la organización, tres características clave de la vida.

“Estamos introduciendo un concepto de material completamente nuevo y realista impulsado por su propio metabolismo artificial”. «No estamos haciendo algo que está vivo, pero estamos creando materiales que son mucho más reales que nunca se han visto antes», dijo Dan Luo, profesor de ingeniería biológica y ambiental en la Facultad de Agricultura y Ciencias de la Vida.

El artículo es «Material de ADN dinámico con comportamiento de locomoción emergente impulsado por el metabolismo artificial» (Dynamic DNA material with emergent locomotion behavior powered by artificial metabolism), publicado el 10 de abril en Science Robotics.

Para que cualquier organismo vivo se mantenga, debe haber un sistema para gestionar el cambio. Se deben generar nuevas células; Las células viejas y los desechos deben ser barridos. La biosíntesis y la biodegradación son elementos clave de la autosostenibilidad y requieren metabolismo para mantener su forma y funciones.

A través de este sistema, las moléculas de ADN se sintetizan y ensamblan en patrones de manera jerárquica, lo que resulta en algo que puede perpetuar un proceso dinámico y autónomo de crecimiento y decadencia.

Usando DASH, los ingenieros de Cornell crearon un biomaterial que puede emerger de forma autónoma de sus bloques de construcción a nanoescala y organizarse por sí mismo, primero en polímeros y finalmente en formas de mesoescala (componentes en un rango de aproximadamente 0,1 mm a 5 mm). Partiendo de una secuencia de semillas de 55 nucleótidos, las moléculas de ADN se multiplicaron cientos de miles de veces, creando cadenas de ADN de repetición de unos pocos milímetros de tamaño. La solución de reacción se inyectó luego en un dispositivo microfluídico que proporcionaba un flujo de energía líquida y los componentes básicos necesarios para la biosíntesis.

A medida que el flujo invadía el material, el ADN sintetizaba sus propias nuevas hebras, con el extremo frontal del material creciendo y el extremo de la cola degradándose en un equilibrio optimizado. De esta manera, hizo su propia locomoción, avanzando lentamente, contra el flujo, de manera similar a como se mueve el moho mucilaginoso.

La habilidad de locomoción permitió a los investigadores enfrentar grupos del material entre sí en carreras competitivas. Debido a la aleatoriedad en el entorno, un cuerpo eventualmente obtendría una ventaja sobre el otro, permitiendo que uno cruzara primero una línea de meta.

“Los diseños siguen siendo primitivos, pero mostraron una nueva ruta para crear máquinas dinámicas a partir de biomoléculas. Estamos en un primer paso en la construcción de robots reales mediante el metabolismo artificial”, dijo Shogo Hamada, profesor e investigador asociado en el laboratorio de Luo, y autor principal y coautor del artículo. “Incluso a partir de un diseño simple, pudimos crear comportamientos sofisticados como las competencias. El metabolismo artificial podría abrir una nueva frontera en robótica».

Actualmente, los ingenieros están explorando formas para que el material reconozca los estímulos y puedan buscarlos de manera autónoma en el caso de la luz o los alimentos, o evitarlos si son dañinos.

El metabolismo programado incrustado en los materiales de ADN es la innovación clave. El ADN contiene el conjunto de instrucciones para el metabolismo y la regeneración autónoma. Después de eso, es por su cuenta.

“Todo, desde su capacidad para moverse y competir, todos esos procesos son independientes. No hay interferencia externa «, dijo Luo. “La vida comenzó miles de millones de años a partir de unos pocos tipos de moléculas. Esto podría ser lo mismo».

El material que el equipo creó puede durar dos ciclos de síntesis y degradación antes de que caduque. Según los investigadores, es probable que la longevidad se extienda, lo que abre la posibilidad de más «generaciones» de material a medida que se auto-replica. «En última instancia, el sistema puede llevar a máquinas auto-reproductivas realistas», dijo Hamada.

«Más emocionante, el uso del ADN le da a todo el sistema una posibilidad de auto-evolución», dijo Luo. «Eso es enorme».

Teóricamente, podría diseñarse para que las generaciones subsiguientes surjan en segundos. Según Luo, la reproducción a este ritmo acelerado aprovecharía las propiedades de mutación naturales del ADN y aceleraría el proceso evolutivo.

En el futuro, el sistema podría usarse como un biosensor para detectar la presencia de cualquier ADN y ARN. El concepto también podría usarse para crear una plantilla dinámica para hacer proteínas sin células vivas.

El trabajo fue financiado en parte por la National Science Foundation y apoyado por el Fondo de Ciencia y Tecnología de NanoEscala de Cornell y el Instituto Kavli en Cornell for Nanoscale Science. Entre los colaboradores se encuentran Jenny Sabin, la profesora de Arquitectura Arthur L. e Isabel B. Wiesenberger, y los investigadores forman la Universidad Jiaotong de Shanghai y la Academia China de Ciencias.

Hay una patente pendiente en el Centro de Licencias de Tecnología.