Archivo por meses: diciembre 2014

El insecto palo robótico HECTOR da sus primeros pasos

Un equipo de investigadores de la Universidad de Bielefeld ha tenido éxito en enseñarle la forma de caminar al único robot de su tipo en el mundo. Sus primeros pasos fueron registrados en un video. El robot se llama HECTOR y su construcción se basa en las formas de un insecto palo (Phasmatodea)

Con un diseño inspirado en los insectos, HECTOR tiene juntas elásticas pasivas y un exoesqueleto ultraligero. Lo que lo hace único es que está equipado con un gran número de sensores y que funciona de acuerdo con un concepto inspirado en la biología, un control reactivo descentralizado: el Walknet. Para el 2017, el robot andante estará equipado con habilidades adicionales dentro de un importante proyecto en el Centro de Excelencia de Tecnología de Interacción Cognitiva (CITEC).

Dibujo de diseño de HECTOR

El robot andante ha sido construido por el grupo de investigación en biomecatrónica. En el futuro, HECTOR servirá como una plataforma para los biólogos y expertos en robótica para poner a prueba las hipótesis sobre la locomoción animal. Un aspecto importante será la fusión de grandes cantidades de datos de los sensores de manera que el robot pueda caminar de modo más autónomo que antes. Una cuestión clave más será una óptima coordinación de los movimientos en un robot con articulaciones elásticas.




«La forma en que actúa la elasticidad en las unidades de HECTOR es comparable a la forma en que los músculos actúan en los sistemas biológicos», dice el profesor Dr. Axel Schneider. Él dirige el grupo de investigación biomecatrónica y coordina el proyecto CITEC junto con el Profesor Dr. Volker Dürr del Departamento de Cibernética Biológica de la Facultad de Biología. Schneider y su equipo desarrollaron sus propios actuadores elásticos. HECTOR tiene 18 de esos. Gracias a la elasticidad inspirada en la biología que poseen sus unidades, HECTOR puede adaptarse con flexibilidad a las propiedades de las superficies sobre las que camina.

«Sin embargo, la elasticidad por sí sola no es suficiente para que HECTOR pueda caminar a través de un entorno natural que contiene obstáculos», dice Schneider. «El reto era desarrollar un sistema de control que se encargara de coordinar los movimientos de sus patas en entornos difíciles, también».

El colega de Schneider Jan Paskarbeit fue responsable del desarrollo y la construcción del robot. Él también programó una versión virtual de HECTOR con el fin de poner a prueba enfoques de control experimental sin dañar el robot. «Todos los subsistemas tienen que comunicarse entre sí para que el robot camine sin ninguna dificultad», dice Paskarbeit. «De lo contrario, por ejemplo, HECTOR podría tener demasiadas patas en el aire al mismo tiempo, volverse inestable y caerse. Por otra parte, las patas tienen que ser capaces de reaccionar a las colisiones contra obstáculos. Hemos Solucionado esto implementando un comportamiento reflejo para subir por encima de los objetos», explica el investigador del CITEC.

En el Centro de Excelencia CITEC, ocho grupos de investigación se han unido durante tres años en un proyecto a gran escala para optimizar a HECTOR. Los científicos vienen de los campos de la informática, la biología, la física y la ingeniería.

En la actualidad, los investigadores están trabajando en el equipamiento de la sección frontal de HECTOR con sensores de largo alcance, como en una cabeza. Ya tienen un prototipo con dos cámaras laterales y dos antenas táctiles. Tanto el sistema visual como el táctil están inspirados en los de los insectos; sus espacios de funcionamiento y su resolución son similares a los de modelos animales.

Equipo de diseño de HECTOREquipo de trabajo

«Un gran reto ahora será encontrar una forma eficaz de integrar estos sensores de largo alcance con los sensores de posición y los sensores de las articulaciones. HECTOR es la plataforma ideal de investigación para hacer esto», dice Volker Dürr.

A hexapod walker using a heterarchical architecture for action selection

Por otra parte, hasta la fecha Hector ha sido un sistema reactivo: Reacciona a los estímulos de su entorno; gracias al programa de software «Walknet” puede caminar con un paso de insecto; y gracias a otro programa llamado «Navinet» es capaz de encontrar el camino hacia cualquier objetivo distante. Pero Schillling y Cruse también han desarrollado un programa llamado «reaCog» que se activa cuando dos de los otros programas no son capaces de resolver un problema dado.

Este nuevo software permite al robot simular un «comportamiento imaginado» para resolver dicho problema: Héctor busca nuevas soluciones y evalúa si estas acciones tendrían sentido, en vez de completar automáticamente cualquier operación predeterminada. El hecho de ser capaz de imaginar acciones es una característica central de una forma simple de conciencia.

Autoconciencia

Pero en breve, además, Héctor demostrará cómo funciona la nueva arquitectura de software para él creada y que le proporcionará la “autoconciencia”. De momento, esta arquitectura solo ha sido probada en simulaciones informáticas.

Como explica Holk Cruse, «el ser humano posee conciencia reflexiva cuando no solo puede percibir lo que experimenta, sino que también tiene la capacidad de experimentar que está experimentando algo. Por tanto, la conciencia reflexiva existe si un sistema técnico o humano puede verse a sí mismo ‘desde fuera de sí mismo’, por así decirlo».

Cruse y Schilling han demostrado como puede surgir conciencia reflexiva de un robot. «Con el nuevo software, Héctor puede observar su estado mental interno —en cierta medida, sus estados de ánimo— y dirigir sus acciones, usando esta información», señala Schilling. Pero, además, estas facultades básicas estarán preparadas para que Héctor también sea capaz de evaluar el estado mental de otros. Así será “capaz de sentir las intenciones o expectativas de los demás, y actuar en consecuencia”, aseguran los investigadores.

Noticias relacionadas:






Mecánica del robot didáctico: ruedas principales (1)

En este artículo analizo las opciones para las ruedas principales, de movimiento, del robot didáctico social, y la búsqueda (constante) de muy bajo costo, o si es posible CERO costo. Sólo me quedaré tranquilo cuando se pueda armar totalmente con material de desarme de equipos descartados.

Ruedas

Gracias a un dinero donado pude comprar 96 ruedas de la marca RASTI de 53 mm de diámetro y sus juegos de ejes con dos puntas de encastre.

Ruedas de RASTI

Los ejes son del viejo estilo, no como se fabrican ahora, lo mismo en el caso de las ruedas, aunque en éstas no se nota gran diferencia. Con los ejes es otra cosa, ya que los ejes actuales son de metal con el cabezal de empalme plástico, mientras que los antiguos son totalmente de plástico blando.

Ejes y otras piezas

Los ejes cortos (96 en total) tienen 40 mm de longitud total, 17 de la parte recta del eje en sí y el resto en 11,5 mm de cada uno de los cabezales. La rigidez en el caso de este eje corto es aceptable.

Los ejes largos (48 en total) tienen 74 mm de longitud total, 51 de la parte recta del eje en sí y el resto en 11,5 mm de cada uno de los cabezales. El eje largo se dobla con facilidad.

Ejes blandos

Los 96 ejes cortos parecen ofrecer la mejor solución para empalmar la rueda con el mecanismo de reducción del motor en el robot didáctico. La tarea a pensar seriamente es crear un buje que, en su fricción contra el eje, no lo desgaste ni tampoco se desgaste demasiado. Debería tener, incluso, un punto de ingreso de grasa lubricante.

En el centro de la imagen de abajo se observan las piezas de Rasti que, de a dos, cumplen esta función (de color gris). Pero no me parece que su durabilidad en un uso más intenso, como en un robot para aprendizaje, sea adecuada.

Unión tipo RASTI

El montaje que debemos estudiar no utilizará las piezas de RASTI que se diseñaron como “bujes”, y de uno de los extremos debemos estudiar el método de anclaje (conexión) con el mecanismo de engranajes de reducción de los motores.

Unión que se debe diseñar

Se muestra un diagrama del fabricante del montaje de ruedas con un eje corto (no hacer caso a los colores, no coinciden con los reales de ninguna de las dos clases de ejes que he conocido). Le sigue una imagen con mis anotaciones.

El “buje” ideal sería, como lo son las piezas de ladrillos encastrables originales, una pieza compuesta de dos partes, con su conducto para el eje, dos orificios de fijación y uno en la parte superior, centrado y conectado con el conducto del eje, por donde aplicar la grasa adecuada. Debo averiguar bien con qué material se debería hacer esta pieza que dibujé, más o menos, en la imagen de abajo.

Bloques de montaje diseñados

El próximo paso necesario es conectar el extremo opuesto del eje de la rueda al mecanismo de reducción de la unidad de CD-ROM, sobre el engranaje de salida. Quizás la mejor opción es buscar un engranaje que se ajuste al de este mecanismo y colocarlo en el extremo del eje de RASTI. Uno de los problemas es que en estos mecanismos (como ya comenté en artículos anteriores) hay una variación muy grande de diámetros de engranaje, de paso y cantidad de dientes.

Sin embargo, es una posibilidad más interesante que la de unir directamente el eje al engranaje de salida, ya que aporta facilidad de desarme para el mantenimiento y reemplazo de partes.

En este caso se conectaría así:

Conexión propuesta con engranaje acoplado

Otra opción (con costo de compra, y lamentablemente sin posibilidad de comprar las piezas individuales, ya que solamente se pueden adquirir como parte de kits con muchas otras piezas), sería usar el conector que mostramos remarcado en la foto que sigue:

Pieza de RASTI para encastrar piezas al eje

Este conector nos permitiría unir el eje a aquellos engranajes de salida que tengan suficiente diámetro, en los cuales se puedan perforar los 4 agujeros de encastre para los postes de amarre de esta pieza.




En las fotos que siguen muestro algunos ejemplos de uso de esta pieza.

Pieza de encastre unida a un engranaje (y otros empalmes)Ejemplo de encastre 1

Pieza de encastre unida a una llanta de ruedaEjemplo de encastre 2

Pieza de encastre unida a una polea y a un engranajeEjemplo de encastre 3

Piezas de encastre unidas a piezas «ladrillo» estándarEjemplo de encastre 4

Otra posibilidad es sacar molde del encastre del cubo de la rueda y de la parte circular de la llanta plástica, y crear nuestra propias piezas con epoxi o algún plástico derretible. Puede ser difícil… o no. No tengo experiencia en esta tarea y debería hacer pruebas.

Ruedas

También se podría tomar un molde del punto de unión con el eje de la pieza de encastre de cuatro postes que vimos antes, sólo que del lado de los postes insertables se colocaría un círculo plástico a unir con el engranaje, o un engranaje que coincida en el engranaje de salida de la caja de reducción.

Otra manera es unir un círculo de plástico al extremo del eje (muy bien centrado, y esto me resulta difícil de lograr), y que éste se pueda pegar o atornillar (aunque los tornillos “pesan” y todo lo que sea peso adicional evitable debe ser muy tenido en cuenta en este diseño) a los engranajes de salida de la caja de reducción.

Aquí se observa una solución similar, un tanto tosca, que encontré en Internet (pero es más o menos la idea). Obviamente, se hizo utilizando pegamento. El eje que sobresale del disco gris de la foto sería, en nuestro caso, el eje de RASTI al que va unida la rueda.

Unión eje – engranajeUnión eje con engranaje

El primer intento será: engranajes acoplados al eje y a la salida de la caja de reducción

Ya que en principio parece ser menos complejo agregar un engranaje en el extremo opuesto del eje de la rueda, he desarmado una serie de video-caseteras VHS viejas y descartadas que compré en remates, obteniendo varios pares de engranajes.

Recordemos que cada robot tiene un par de motores y sus juegos de engranaje asociados, de modo que siempre estamos hablando de conjuntos de dos piezas.

Engranajes de desarmeEngranajes varios

El trabajo ahora es buscar de aparear estos engranajes con los de salida de los conjuntos de reducción que obtuve del desarme de unidades de CD-ROM (muy variados en diámetro y paso, como ya dije), y luego buscar la forma más segura y práctica de unirlos al extremo del eje. El resto es montar todo sobre una base.

Continuaré con este tema…

Más información:






Base robótica

Construir un robot sobre un chassis comprado, que ya tiene los elementos necesarios, es mucho más fácil que crear su mecánica: se necesita habilidad de manipuleo, las herramientas correctas y precisión en el trabajo

Si queremos crearlo a partir de materiales de desarme, ya es otra cosa. Un robot necesita una base donde montar la estructura. La plataforma en sí no es un gran problema, se puede recortar de partes de cajas de monitores, impresoras, frentes de PCs, bandejas de CR-ROM, chassis y tapas de discos rígidos, etc. No necesita tener tantas perforaciones y ranuras como tienen las plataformas comerciales. Agujereamos según las necesidades.

La imagen lo ilustraChassis comprado

El problema cuando se busca obtener todos los materiales desde la recuperación de elementos de equipos descartados son las otras tres partes: dos motores con reducción, sus ruedas y una rueda de giro libre, o rueda loca.


En la serie de artículos de los últimos tiempos estuve tratando sobre la recuperación de motores con reducción que puedan adaptarse a un robot didáctico. Quien los haya leído, se habrá dado cuenta de que no es tan fácil como parece, ya que la mecánica de las unidades de CD-ROM, de discos rígidos y de disketteras suele ser muy variada. Cuesta mucho conseguir los pares para cada robot. Deben ser idénticos en lo mecánico y también eléctricamente, aunque compensar las diferencias en la parte eléctrica es más fácil.

Los artículos hasta ahora fueron:

Así que los próximos movimientos deben estar orientados a conseguir ruedas que se adapten a los mecanismos de motor y engranaje que he rescatado de unidades de CR-ROM. No deberían ser compradas (aunque sí pueden provenir de donaciones), o entramos a la situación de crear un robot que no esté formado de partes rescatadas; y este es el programa propuesto.

Otro elemento a lograr es la rueda libre, o rueda loca. El tercer punto de apoyo del robot. Luego vienen los portapilas, y finalmente la electrónica. Son los temas que iré tratando en unas pequeñas notas que seguirán. Hay diversas opciones, pero la elegida no debe hacernos muy esclavos en tiempo de trabajo: las horas-hombre tienen valor cuando no se tiene un mecenas que te mantenga.

Ejemplo de rueda loca compradaRueda loca

Próximamente, un elemento que por simple no se aleja de ser crítico: Ruedas para el robot didáctico.

Ejemplo de base y rueda loca caserasBase y rueda loca caseras






Donaciones para los robots desde Marcos Paz

Nuevas donaciones para desarme y para construir robots de mi plan Robots Didácticos Sociales. Como verán, algunas muy específicas e interesantes. Gracias, Susi, Leonel, Andrea

Conjunto de donaciones recibidasConjunto donaciones
Donaciones

Donaciones para los robots desde Marcos Paz: un auto a control remoto; sin el transmisor del control, aunque igual debe valer mucho dineroAuto de carrera

Donaciones para los robots desde Marcos Paz: este tipo de ruedas, con cubiertas blandas neumáticas, son excelentes para la marcha y agarre de un robot y tienen importantes precios en el mercadoRuedas






Sensores – Conceptos generales – Descripción y funcionamiento

por Eduardo J. Carletti

 

Introducción
Un robot es, por definición, una máquina capaz de interactuar con su entorno. Si es móvil, a menos que se mueva en un espacio absolutamente acotado y preparado para él, deberá ser capaz de adaptar sus movimientos y sus acciones de interacción en base a las características físicas de los ambientes con los que se encuentre y los objetos que hay en ellos.

Para lograr esta capacidad de adaptación, lo primero que necesitan los robots es tener conocimiento del entorno. Esto es absolutamente clave. Para conocer el entorno, los seres vivos disponemos de un sistema sensorial. Los robots no pueden ser menos: deben poseer sensores que les permitan saber dónde están, cómo es el lugar en el que están, a qué condiciones físicas se enfrentan, dónde están los objetos con los que deben interactuar, sus parámetros físicos, etc.

Para esto se utilizan diversos tipos de sensores (o captadores), con un rango de complejidad y sofisticación que varía desde algunos bastante simples a otros con altos niveles de sofisticación de hardware y más aún de complejidad de programación.

Detalles sobre los sensores para robots

Magnitudes físicas que es necesario medir para que un robot tenga algún conocimiento del entorno:

Diversos tipos de captadores o sensores:

Sensores reflectivos y por intercepción (de ranura)

 

Los sensores de objetos por reflexión están basados en el empleo de una fuente de señal luminosa (lámparas, diodos LED, diodos láser, etc.) y una célula receptora del reflejo de esta señal, que puede ser un fotodiodo, un fototransistor, LDR, incluso chips especializados, como los receptores de control remoto. Con elementos ópticos similares, es decir emisor-receptor, existen los sensores «de ranura» (en algunos lugares lo he visto referenciado como «de barrera»), donde se establece un haz directo entre el emisor y el receptor, con un espacio entre ellos que puede ser ocupado por un objeto.

Información detallada -> Sensores – Reflectivos y por intercepción

LDR (Light-Dependent Resistor, resistor dependiente de la luz)

 

Un LDR es un resistor que varía su valor de resistencia eléctrica dependiendo de la cantidad de luz que incide sobre él. Se le llama, también, fotorresistor o fotorresistencia. El valor de resistencia eléctrica de un LDR es bajo cuando hay luz incidiendo en él (en algunos casos puede descender a tan bajo como 50 ohms) y muy alto cuando está a oscuras (puede ser de varios megaohms).

Información detallada -> Sensores – LDR

Fotoceldas o celdas fotovoltaicas

 

La conversión directa de luz en electricidad a nivel atómico se llama generación fotovoltaica. Algunos materiales presentan una propiedad conocida como efecto fotoeléctrico, que hace que absorban fotones de luz y emitan electrones. Cuando se captura a estos electrones libres emitidos, el resultado es una corriente eléctrica que puede ser utilizada como energía para alimentar circuitos. Esta misma energía se puede utilizar, obviamente, para producir la detección y medición de la luz.

Información detallada -> Sensores – Celdas Fotovoltaicas

Fotodiodos

 

El fotodiodo es un diodo semiconductor, construido con una unión PN, como muchos otros diodos que se utilizan en diversas aplicaciones, pero en este caso el semiconductor está expuesto a la luz a través de una cobertura cristalina y a veces en forma de lente, y por su diseño y construcción será especialmente sensible a la incidencia de la luz visible o infrarroja. Todos los semiconductores tienen esta sensibilidad a la luz, aunque en el caso de los fotodiodos, diseñados específicamente para esto, la construcción está orientada a lograr que esta sensibilidad sea máxima.

Información detallada -> Sensores – Fotodiodos

Fototransistores

 

Los fototransistores no son muy diferentes de un transistor normal, es decir, están compuestos por el mismo material semiconductor, tienen dos junturas y las mismas tres conexiones externas: colector, base y emisor. Por supuesto, siendo un elemento sensible a la luz, la primera diferencia evidente es en su cápsula, que posee una ventana o es totalmente transparente, para dejar que la luz ingrese hasta las junturas de la pastilla semiconductora y produzca el efecto fotoeléctrico.

Información detallada -> Sensores – Fototransistores

CCD y cámaras de vídeo

 

La abreviatura CCD viene del inglés Charge-Coupled Device, Dispositivo Acoplado por Carga. El CCD es un circuito integrado. La característica principal de este circuito es que posee una matriz de celdas con sensibilidad a la luz alineadas en una disposición físico-eléctrica que permite «empaquetar» en una superficie pequeña un enorme número de elementos sensibles y manejar esa gran cantidad de información de imagen (para llevarla al exterior del microcircuito) de una manera relativamente sencilla, sin necesidad de grandes recursos de conexiones y de circuitos de control.

Información detallada -> Sensores – CCD y Cámaras de vídeo

Microinterruptores

 

No es necesario extenderse mucho sobre estos componentes (llamados «microswitch» en inglés), muy comunes en la industria y muy utilizados en equipos electrónicos y en automatización.

Con seguridad con la recopilación de imágenes que presentamos a la izquierda será suficiente.

Información detallada -> Sensores mecánicos de choque (parachoques)

Sensores de presión

 

En la industria hay un amplísimo rango de sensores de presión, la mayoría orientados a medir la presión de un fluido sobre una membrana. En robótica puede ser necesario realizar mediciones sobre fluidos hidráulicos (por dar un ejemplo), aunque es más probable que los medidores de presión disponibles resulten útiles como sensores de fuerza (el esfuerzo que realiza una parte mecánica, como por ejemplo un brazo robótico), con la debida adaptación. Se puede mencionar un sensor integrado de silicio como el MPX2100 de Motorola, de pequeño tamaño y precio accesible.

Información detallada -> Sensores – Presión

Sensores de fuerza

 

Un sensor de fuerza ideal para el uso en robótica es el sensor FlexiForce. Se trata de un elemento totalmente plano integrado dentro de una membrana de circuito impreso flexible de escaso espesor. Esta forma plana permite colocar al sensor con facilidad entre dos piezas de la mecánica de nuestro sistema y medir la fuerza que se aplica sin perturbar la dinámica de las pruebas. Los sensores FlexiForce utilizan una tecnología basada en la variación de resistencia eléctrica del área sensora. La aplicación de una fuerza al área activa de detección del sensor se traduce en un cambio en la resistencia eléctrica del elemento sensor en función inversamente proporcional a la fuerza aplicada.

Información detallada -> Sensores – Sensor de fuerza FlexiForce

Sensores de contacto (choque)

 

Para detectar contacto físico del robot con un obstáculo se suelen utilizar interruptores que se accionan por medio de actuadores físicos. Un ejemplo muy clásico serían unos alambres elásticos que cumplen una función similar a la de las antenas de los insectos. En inglés les llaman «whiskers» (bigotes), relacionándolos con los bigotes sensibles de los animales como —por ejemplo— los perros y gatos. También se usan bandas metálicas que rodean al robot, o su frente y/o parte trasera, como paragolpes de autos.

Información detallada -> Sensores – Contacto




Piel robótica

 

El mercado ha producido, en los últimos tiempos, sensores planos, flexibles y extendidos a los que han bautizado como «robotic skin», o piel robótica. Uno de estos productos es el creado por investigadores de la universidad de Tokio. Se trata de un conjunto de sensores de presión montados sobre una superficie flexible, diseñados con la intención de aportar a los robots una de las capacidades de nuestra piel: la sensibilidad a la presión.

Información detallada -> Sensores – Piel robótica

Micrófonos y sensores de sonido

 

El uso de micrófonos en un robot se puede hallar en dos aplicaciones: primero, dentro de un sistema de medición de distancia, en el que el micrófono recibe sonidos emitidos desde el mismo robot luego de que éstos rebotan en los obstáculos que tiene enfrente, es decir, un sistema de sonar; y segundo, un micrófono para captar el sonido ambiente y utilizarlo en algún sentido, como recibir órdenes a través de palabras o tonos, y, un poco más avanzado, determinar la dirección de estos sonidos. Como es obvio, ahora que se habla tanto de robots para espionaje, también se incluyen micrófonos para tomar el sonido ambiente y transmitirlo a un sitio remoto.

Información detallada -> Sensores – Sonido

Rangers (medidores de distancia) ultrasónicos

 

Los medidores ultrasónicos de distancia que se utilizan en los robots son, básicamente, un sistema de sonar. En el módulo de medición, un emisor lanza un tren de pulsos ultrasónicos y espera el rebote, midiendo el tiempo entre la emisión y el retorno, lo que da como resultado la distancia entre el emisor y el objeto donde se produjo el rebote. Se pueden señalar dos estrategias en estos medidores: los que tienen un emisor y un receptor separados y los que alternan la función (por medio del circuito) sobre un mismo emisor/receptor piezoeléctrico. Este último es el caso de los medidores de distancia incluidos en las cámaras Polaroid con autorango, que se obtienen de desarme y se usan en la robótica de experimentación personal.

Hay tipos característicos de sensores de distancia que se utilizan en robots:

1. Los módulos de ultrasonido contenidos en las viejas cámaras Polaroid con autorango, que se pueden conseguir en el mercado de usados por relativamente poco dinero.
2. Los módulos SRF de Devantech, que son capaces de detectar objetos a una distancia de hasta 6 metros, además de conectarse al microcontrolador mediante un bus I2C.

Información detallada -> Sensores – Medidores de distancia ultrasónicos

Medidores de distancia por haz infrarrojo

 

La empresa Sharp produce una línea de medidores de distancia basados en un haz infrarrojo, que forman la familia GP2DXXX. Estos sensores de infrarrojos detectan objetos a distintos rangos de distancia, y en algunos casos ofrecen información de la distancia en algunos modelos, como los GP2D02 y GP2D12. El método de detección de estos sensores es por triangulación. El haz es reflejado por el objeto e incide en un pequeño array CCD, con lo cual se puede determinar la distancia y/o presencia de objetos en el campo de visión. En los sensores que entregan un nivel de salida analógico para indicar la distancia, el valor no es lineal con respecto a la distancia medida, y se debe utilizar una tabla de conversión.

Información detallada -> Sensores – Medidores de distancia por haz infrarrojo

Acelerómetros, sensores de vibración

 

Un acelerómetro es un dispositivo que permite medir el movimiento y las vibraciones a las que está sometido un robot (o una parte de él), en su modo de medición dinámico, y la inclinación (con respecto a la gravedad), en su modo estático.

De los antiguos acelerómetros mecánicos, de tamaño grande y dificultosos de construir, porque incluían imanes, resortes y bobinas (en algunos modelos), se ha pasado en esta época a dispositivos integrados, con los elementos sensibles creados sobre los propios microcircuitos.

Estos sensores, disponibles en forma de circuito integrado, son los que se utilizan normalmente en robótica experimental. Uno de los acelerómetros integrados más conocidos es el ADXL202, muy pequeño, versátil y de costo accesible.

Información detallada -> Sensores – Acelerómetros, sensores de vibración

Sensores pendulares (Inclinómetros)

 

Queda claro que la inclinación de un robot se puede medir con facilidad utilizando las características de medición estática del sensor ADXL202 que descibimos aquí arriba. Las ventajas de este sensor son grandes, debido a su pequeño tamaño, sólida integración y facilidad de conexión con microcontroladores. De todos modos, existen otras soluciones para determinar la posición de la vertical (en base a la fuerza de la gravedad), y las listaremos brevemente.

El mercado ofrece dispositivos con diversas soluciones mecánicas, todas basadas en un peso, a veces suelto aunque flotando en un medio viscoso, a veces ubicado sobre una rueda cargada sobre un lado de su circunferencia, en ocasiones una esfera. Hasta hay sensores basados en el movimiento de un líquido viscoso y conductor de la electricidad dentro de una cavidad. Las partes móviles en muchos casos están sumergidas en aceite, para evitar que la masa que hace de péndulo quede realizando movimientos oscilantes. Los sensores pueden estar basados en efecto capacitivo, electrolítico, de torsión (piezoeléctrico), magnético (inducción sobre bobinas) y variación resistiva.

Contactos de mercurio

 

También para medir inclinación, aunque en este caso sin obtener valores intermedios, sino simplemente un contacto abierto o cerrado, existen las llaves o contactos de mercurio, que consisten en un cilindro (por lo general de vidrio) en el que existen dos contactos a cerrar y una cantidad suficiente de mercurio que se puede deslizar a un extremo u otro del cilindro y cerrar el contacto.


Giróscopos

 

El giróscopo o giroscopio está basado en un fenómeno físico conocido hace mucho, mucho tiempo: una rueda girando se resiste a que se le cambie el plano de giro (o lo que es lo mismo, la dirección del eje de rotación). Esto se debe a lo que en física se llama «principio de conservación del momento angular».

En robots experimentales no se suelen ver volantes giratorios. Lo que es de uso común son unos sensores de pequeño tamaño, como los que se utilizan en modelos de helicópteros y robots, basados en integrados cuya «alma» son pequeñísmas lenguetas vibratorias, construidas directamente sobre el chip de silicio. Su detección se basa en que las piezas cerámicas en vibración son sujetas a una distorsión que se produce por el efecto Coriolis.

Información detallada -> Sensores – Giróscopos

Termistores

 

Un termistor es un resistor cuyo valor varía en función de la temperatura. Existen dos clases de termistores: NTC (Negative Temperature Coefficient, Coeficiente de Temperatura Negativo), que es una resistencia variable cuyo valor se decrementa a medida que aumenta la temperatura; y PTC (Positive Temperature Coefficient, Coeficiente de Temperatura Positivo), cuyo valor de resistencia eléctrica aumenta cuando aumenta la temperatura.

La lectura de temperaturas en un robot, tanto en su interior como en el exterior, puede ser algo extremadamente importante para proteger los circuitos, motores y estructura de la posibilidad de que, por fricción, esfuerzo, trabas o excesos mecánicos de cualquier tipo se alcancen niveles peligrosos de calentamiento.

RTD (Termorresistencias)

 

Los sensores RTD (Resistance Temperature Detector), basados en un conductor de platino y otros metales, se utilizan para medir temperaturas por contacto o inmersión, y en especial para un rango de temperaturas elevadas, donde no se pueden utilizar semiconductores u otros materiales sensibles. Su funcionamiento está basados en el hecho de que en un metal, cuando sube la temperatura, aumenta la resistencia eléctrica.

Termocuplas

 

El sensor de una termocupla está formado por la unión de dos piezas de metales diferentes. La unión de los metales genera un voltaje muy pequeño, que varía con la temperatura. Su valor está en el orden de los milivolts, y aumenta en proporción con la temperatura. Este tipo de sensores cubre un amplio rango de temperaturas: -180 a 1370 °C.


Diodos para medir temperatura

 

Se puede usar un diodo semiconductor ordinario como sensor de temperatura. Un diodo es el sensor de temperatura de menor costo que se puede hallar, y a pesar de ser tan barato es capaz de producir resultados más que satisfactorios. Sólo es necesario hacer una buena calibración y mantener una corriente de excitación bien estable. El voltaje sobre un diodo conduciendo corriente en directo tiene un coeficiente de temperatura de alrededor de 2,3 mV/°C y la variación, dentro de un rango, es razonablemente lineal. Se debe establecer una corriente básica de excitación, y lo mejor es utilizar una fuente de corriente constante, o sino un resistor conectado a una fuente estable de voltaje.


Circuitos integrados para medir temperatura

 

Existe una amplia variedad de circuitos integrados sensores de temperatura (se puede encontrar una lista en el link de abajo con la información detallada). Estos sensores se agrupan en cuatro categorías principales: salida de voltaje, salida de corriente, salida de resistencia y salida digital. Con salida de voltaje podemos encontrar los muy comunes LM35 (°C) y LM34 (°K) de National Semiconductor. Con salida de corriente uno de los más conocidos es el AD590, de Analog Devices. Con salida digital son conocidos el LM56 y LM75 (también de National). Los de salida de resistencia son menos comunes, fabricados por Phillips y Siemens.

Información detallada -> Sensores – Integrados para medir temperatura

Pirosensores (sensores de llama a distancia)

 

Existen sensores que, basados en la detección de una gama muy angosta de ultravioletas, permiten determinar la presencia de un fuego a buena distancia. Con los circuitos que provee el fabricante, un sensor de estos (construido con el bulbo UVTron) puede detectar a 5 metros de distancia un fósforo (cerilla) encendido dentro de una habitación soleada. En el mercado de sensores industriales se puede encontrar una variedad amplia de sensores de llama a distancia, algunos que detectan también ultravioleta y otros que se basan en los infrarrojos, aunque por lo que pude ver, la mayoría son de tamaño bastante grande. Otro sensor que se utiliza en robótica, en este caso sensible a los infrarrojos, es el módulo TPA81.

Información detallada -> Sensores – Pirosensores a distancia

Sensores de humedad

 

La detección de humedad es importante en un sistema si éste debe desenvolverse en entornos que no se conocen de antemano. Una humedad excesiva puede afectar los circuitos, y también la mecánica de un robot. Por esta razón se deben tener en cuenta una variedad de sensores de humedad disponibles, entre ellos los capacitivos y resistivos, más simples, y algunos integrados con diferentes niveles de complejidad y prestaciones.

Para el uso en robótica, por suerte, se puede contar con módulos pequeños, versátiles y de costo accesible, como el SHT11 de Sensirion.

Información detallada -> Sensores – Humedad

Sensores magnéticos

 

En robótica, algunas situaciones de medición del entorno pueden requerir del uso de elementos de detección sensibles a los campos magnéticos. En principio, si nuestro robot debe moverse en ambientes externos a un laboratorio, una aplicación importante es una brújula que forme parte de un sistema de orientación para nuestro robot.

Otra aplicación es la medición directa de campos magnéticos presentes en las inmediaciones, que podrían volverse peligrosos para el «cerebro» de nuestro robot si su intensidad es importante.

Una tercera aplicación es la medición de sobrecorrientes en la parte motriz (detectando la intensidad del campo magnético que genera un conductor en la fuente de alimentación). También se podrán encontrar sensores magnéticos en la medición de movimientos, como el uso de detectores de «cero movimiento» y tacómetros basados en sensores por efecto Hall o pickups magnéticos.

Información detallada -> Sensores – Magnetismo

Sistema de posicionamiento global

 

Si bien nos puede parecer demasiado lujo para nuestros experimentos, lo cierto es que un sistema de posicionamiento global (GPS, Global Positioning System) aporta una serie de datos que pueden ser muy útiles para un robot avanzado. Un ejemplo de este servicio es el módulo DS-GPM, fabricado por Total Robots, que entrega datos de latitud, longitud, altitud, velocidad, hora y fecha y posición satelital.
Estos datos se comunican desde los registros del módulo a través de interfaces I2C y RS232. Si bien no es barato, en realidad no es tan inaccesible.

Receptores de radiobalizas

 

Por medio de un grupo de emisores de radiofrecuencia codificados, ubicados en lugares conocidos por el sistema, es posible establecer con precisión la posición de un robot, con sólo hacer una triangulación. Al efecto el robot debe poseer una antena de recepción direccional (con reflector parabólico, o similar) que pueda girar 360°, y así determine la posición de las radiobalizas. En el robot es posible usar receptores integrados muy pequeños y de bajo costo, como el RWS-433, o el RXLC-434, y otros similares, que trabajan en frecuencias de entre 303 y 433 Mhz. La elección de los transmisores dependerán de la distancia a que se ubiquen las radiobalizas, pero si se trata de áreas acotadas es posible utilizar los módulos transmisores hermanados con los anteriores, como el TWS-433 y el TXLC-434.

Información detallada -> Sensores – Receptores (y transmisores) de RF

Sensores de proximidad

 

Los sensores de proximidad que se obtienen en la industria son resultado de la necesidad de contar con indicadores de posición en los que no existe contacto mecánico entre el actuador y el detector. Pueden ser de tipo lineal (detectores de desplazamiento) o de tipo conmutador (la conmutación entre dos estados indica una posición particular). Hay dos tipos de detectores de proximidad muy utilizados en la industria: inductivos y capacitivos.

Los detectores de proximidad inductivos se basan en el fenómeno de amortiguamiento que se produce en un campo magnético a causa de las corrientes inducidas (corrientes de Foucault) en materiales situados en las cercanías. El material debe ser metálico. Los capacitivos funcionan detectando las variaciones de la capacidad parásita que se origina entre el detector propiamente dicho y el objeto cuya distancia se desea medir. Se emplean para medir distancias a objetos metálicos y no metálicos, como la madera, los líquidos y los materiales plásticos.