Archivo de la etiqueta: Sensores

Unidad de Medición Inercial Multipropósito – IMU Razor M0 de 9DoF (parte 1)

La IMU Razor M0 de 9DoF (Unidad de Medición Inercial Multipropósito: Multi-purpose Inertial Measurement Unit = IMU) combina un microprocesador SAMD21 con un sensor MPU-9250 de 9DoF (nueve grados de libertad), creando una unidad compacta y reprogramable. Se puede programar para monitorear y registrar movimiento, transmitir ángulos de Euler por un puerto serie, o incluso para funcionar como un podómetro que cuente los pasos.

Una unidad de medición inercial o IMU (del inglés inertial measurement unit), es un dispositivo electrónico que mide e informa acerca de la velocidad, orientación y fuerzas gravitacionales de un aparato, usando una combinación de acelerómetros y giróscopos. En este caso se agrega un nivel más: un magnetómetro, que permite conocer la ubicación respecto al campo magnético terrestre. Las unidades de medición inercial se usan para maniobrar aviones, incluyendo vehículos aéreos no tripulados, entre muchos otros usos, y además naves espaciales, incluyendo transbordadores, satélites y aterrizadores. La IMU es el componente principal de los sistemas de navegación inercial usados en buques y misiles guiados entre otros. En este uso, los datos recolectados por los sensores de una IMU permiten a un computador seguir la posición del aparato, usando un método conocido como navegación por estima.

El chip MPU-9250 de 9DoF de la Razor posee tres sensores cada uno de tres ejes –un acelerómetro, un giroscopio y un magnetómetro– que le dan la capacidad de detectar aceleración lineal, velocidad de rotación angular, y vectores de campo magnético.

El microprocesador que contiene –el SAMD21G18A de Atmel–, es un microcontrolador ARM de 32-bit Cortex-M0+ compatible con Arduino, que se utiliza también en los Arduino Zero y el SAMD21 de la nueva línea MKR de mini plaquetas de Arduino.

Además del par principal de circuitos integrados, la IMU Razor de 9DoF posee un zócalo para trajeta µSD, un cargador para baterías LiPo, llave de encendido y un conector de E/S para proyectos de expansión. Viene pre-programada con un firmware de ejemplo y un bootloader compatible con el IDE de Arduino, de modo que se puede modificar el firmware según las necesidades y grabarle nuevo código a través de una conexión USB.

Este artículo provee una fuente de información para comenzar, y una guía de inicio para trabajar con la IMU de SparkFun de 9DoF Razor M0. Documentaré primero las características de hardware y firmware de la plaqueta, y a continuación, mostraré cómo usar el IDE de Arduino con la biblioteca MPU-9250 de Sparkfun para Arduino para reprogramar la IMU Razor a las necesidades de nuestros proyectos.

Materiales necesarios

La IMU Razor M0 de 9DoF está provista de todo lo que se necesita para aprovechar el sensor MPU-9250 de 9DoF. Solo harán falta unos pocos elementos –la mayoría son de esos que uno ya tiene entre sus componentes– además de la plaqueta.




Se puede utilizar un cable micro-B USB para alimentar y también para reprogramar la Razor. Si usted desea tener una placa independiente para que sea móvil, va a necesitar una batería de polímero de Litio de celda única (Lithium-polymer, o LiPo), que se puede recargar conectando la Razor 9DoF en un cargador USB o en un puerto de su PC. Además, si usted necesita registrar los datos, se debe colocar una tarjetita µSD en el zócalo de la IMU Razor. Acepta µSD de cualquier tipo.

Finalmente, puede ser necesario soldar algunos conectores si se desea aprovechar las capacidades de Entrada/Salida y de alimentación de la IMU.

Lecturas sugeridas

El fabricante ha tratado de hacer que la placa sea fácil de usar independientemente del nivel de experiencia en electrónica del usuario. Sin embargo, si desea realizar una lectura previa antes de utilizar y desarrollar programas para el el 9DoF Razor IMU M0, aquí hay algunos tutoriales que ellos recomiendan (inglés):

Giroscopio
Los giroscopios miden la velocidad de rotación alrededor de un eje y son una parte esencial para determinar la orientación en el espacio.

Acelerómetro (Bases)
Una introducción rápida a los acelerómetros, cómo funcionan y por qué se utilizan.

SAMD21
Una introducción al microprocesador Atmel ATSAMD21G18 y las placas de distribución Mini y Pro R3. Mejore sus habilidades Arduino con el potente procesador ARM Cortex M0 +.

MPU-9250
Iníciese y ponga en marcha el sensor MEMS de 9 ejes MPU-9250.

El hardware

Esta placa IMU tiene montados una cantidad de componentes sobre ambas caras del circuito impreso. La imagen muestra el lado que se define como cara superior.

El reverso de la plaqueta posee diversos conectores, además del zócalo de la microSD, la llave de encendido y LEDs para indicar diversas funciones.

Esta IMU es un diseño de hardware abierto. Se puede descargar el diagrama esquemático (en PDF), los archivos Eagle (con el diseño del circuito impreso), y ver la historia del diseño en el reservorio GitHub de Sparkfun.

Alimentando la IMU Razor M0

Esta plaqueta está diseñada para trabajar tanto alimentada desde el cable USB, o con una batería LiPo en el conector adecuado. Sólo hay que asegurarse de que la batería sea de celda simple, con un voltaje nominal de 3,7V a 4,2V.

Conecte tanto el USB como una LiPo para cargar la batería


Si se conectan ambos, el USB y la batería LiPo en la plaqueta, ésta se cargará con una corriente de hasta 450 mA. El estado de la carga lo indica el led amarillo de carga, que se apaga cuando la batería queda cargada a pleno.

Corriente de carga 450mA: La corriente máxima de carga está fijada por un resistor externo y no es modificable, al menos no con facilidad. La práctica nos dice que no es seguro cargar una batería LiPo con una corriente mayor a sus mA/h, lo que significa que no se recomienta utilizar baterías LiPo con capacidades menores a 450mAh para esta plaqueta.

Sea alimentada desde la fuente de USB, o con la batería LiPo, el voltaje es regulado a 3,3 V y se utiliza para alimentar tanto el SAMD21 como el MPU-9250. El regulador tiene una capacidad de aproximadamente 600 mA, lo que significa que debería tener suficiente resto para entregar corriente. Si lo desea puede alimentar otros dispositivos desde los pines marcados con 3V3.

Los pines VIN, VBAT y GND se pueden usar para alimentar el regulador de 3,3V de la IMU Razor en lugar de utilizar las entradas USB o el conector para la LiPo (JST). El voltaje en el pin VIN no debe exceder los 6V, y el pin VBAT solo debe conectarse a una batería LiPo de una celda.

Finalmente, el interruptor de ENCENDIDO/APAGADO en la parte inferior de la placa controla la alimentación entre ambas fuentes de entrada y el resto de los componentes de la placa. Mientras está en la posición «OFF» (Apagado), la batería LiPo seguirá en carga, pero no se debe aportar energía a ningún otro componente.

Perforaciones de pines para el SAMD21 y la alimentación

La placa tiene perforaciones preparadas para soldar conectores con tantos pines de Entrada/Salida del microcontrolador SAMD21 como se pudieron acomodar en el pequeño tamaño de la IMU Razor. Eso incluye los pines 08-13, las entradas del convertidor analógico a digital A0-A4, RX, TX, y los pines I2C, SDA y SCL.

Los pines SDA y SCL están en el mismo bus I2C que el MPU-9250, pero eso no debería ser un problema siempre que los dispositivos I2C adicionales no compartan las direcciones de 7 bits de la IMU (0x68 y 0x0C).

Usted puede soldar conectores hembra como los que tienen los Arduinos UNO y Mega, o hileras de pines macho, o directamente cablear a esos puntos de soldadura para expandir las funciones de la plaqueta. Por ejemplo, usted puede conectar un sensor BME280 directamente en el puerto I2C, y agregar detección de altitud y temperatura a su IMU.

Algunos módulos de la misma marca basados en I2C utilizan la misma
distribución de 4 pines, así que se pueden conectar directamente


El puerto de depuración single-wire = SWD (de un solo cable) del SAMD21 también está perforado en la parte superior de la placa, en caso de que se quiera programar el chip con un depurador JTAG. El pinout de este puerto coincide con el estándar del conector de depuración Cortex de 10 pines. Una «muesca» blanca indica el pin 1 de este puerto.

MPU-9250 Orientación de Acelerómetro / Giroscopio / Magnetómetro

La orientación del acelerómetro, el giroscopio y los ejes X, Y y Z del magnetómetro es determinada por la posición del MPU-9250. Para facilitar la referencia, estos vectores se han documentado con una impresión en la parte superior de la placa.

Tenga en cuenta que los ejes X e Y del magnetómetro están invertidos respecto a los del acelerómetro y el giroscopio, y que el eje Z también está invertido.

Trabajando con el firmware de ejemplo

Además de un gestor de arranque de Arduino (bootloader), el IMU también tiene cargado un ejemplo de firmware que es suficiente para demostrar, al menos, que funciona el seguimiento de movimiento del sensor, e incluso hacer un pequeño registro en una tarjeta µSD. Para comenzar a usar el firmware de ejemplo, simplemente conecte la IMU a una computadora.

Después de conectar la placa, debe aparecer como un puerto serie. En Windows, aparece como COMx y en Mac, debería verse como /dev/tty.usbserial-ABCD12.

Instalación del controlador

Usuarios de Windows 10: la primera vez que conecte el IMU Razor a su computadora, es posible que deba instalar controladores para habilitar el perfil USB de la clase de dispositivo de comunicación (CDC) de la placa.
Si su placa no aparece como un puerto COM, haga clic en el botón de abajo para descargar los controladores.

DESCARGAR DRIVERS DE WINDOWS PARA SAMD21

Para obtener ayuda para instalar los controladores, consulte las instrucciones del fabricante en la guía de conexión de Breakout SAMD21.

Después de ubicar el puerto de la placa, abra el Terminal Serie y establezca la velocidad en baudios a 115200 bps. El Monitor Serie del Arduino funciona bien para este propósito, o puede descargar alguno diferente desde aquí: programas de terminal.

Al abrir el puerto, el IMU Razor 9DoF debe comenzar inmediatamente a enviar las lecturas del acelerómetro, el giroscopio y el magnetómetro.

El formato estándar de la línea de texto es:

<timeMS>, <accelX>, <accelY>, <accelZ>, <gyroX>, <gyroY>, <gyroZ>, <magX>, <magY>, <magZ>

Esta línea se puede modificar enviando cualquiera de los siguientes comandos:

  • ESPACIADOR – Pausa/reinicio de impresión de puerto serie
  • t – Habilitar/deshabilitar las lecturas de tiempo
  • a – Habilitar/deshabilitar las lecturas del acelerómetro
  • g – Habilitar/deshabilitar las lecturas del giróscopo
  • m – Habilitar/deshabilitar las lecturas del magnetómetro
  • c – Alternar entre valores calculados o sin procesar de las lecturas
  • q – Habilitar/deshabilitar lecturas cuaternianas (qw, qx, qy y qz se muestran luego de las lecturas magnéticas)
  • e – Habilitar/deshabilitar cálculos Euler de ángulo (pitch, roll, yaw) (se muestran luego del procesamiento cuaterniano)
  • h – Habilitar/deshabililar las lecturas de encabezado
  • r – Ajustar el ritmo de registro en incrementos de 10Hz entre 1-100Hz (1, 10, 20, … 100)
  • A – Ajustar el rango de escala máxima del acelerómetro. Cicla entre ± 2, 4, 8, and 16 g.
  • G – Ajustar el rango de escala máxima del giroscopio. Cicla entre ± 250, 500, 1000, 2000 dps.
  • s – Habilitar/deshabililar el registro en tarjeta SD

Todas las configuraciones se almacenan en una memoria no volátil, por lo que al iniciar su IMU Razor 9DoF deberá tener la misma información con que la configuró anteriormente.

Además de iniciar sesión en su puerto serie, el firmware también está diseñado para registrar los datos en una tarjeta µSD, si hay una presente. Coloque una y debería tener los archivos de registro de IMU la próxima vez que conecte la tarjeta SD a su lector.

El firmware del 9DoF Razor IMU está disponible en el repositorio GitHub del producto. Para cargar el firmware, necesitará las definiciones de la placa SparkFun SAMD21 y la biblioteca SparkFun MPU-9250 DMP Arduino instalada en su máquina. Que es exactamente lo que vamos a documentar a continuación…

El IMU Razor 9DoF M0 está diseñado en base al SAMD21, el mismo procesador del Arduino Zero, lo que significa que agregar el soporte de Arduino para la placa está a solo unos clics. Esta sección describe los pasos que deberá seguir para instalar los núcleos SAMD en su biblioteca Arduino (eso suena más atemorizante de lo que realmente es).

¡Actualizar Arduino! Esta configuración requiere al menos la versión 1.6.4 o posterior e Arduino. Lo he probado en 1.8.8 y recomendaría esa versión del IDE o superior. Si está ejecutando una versión anterior de Arduino, visite arduino.cc para obtener la última y mejor versión.

Instale las placas de Arduino SAMD

Primero, deberá instalar una variedad de herramientas, que incluyen bibliotecas ARM Cortex de bajo nivel llenas de código genérico, arm-gcc para compilar su código y bossa para cargar código a través del bootloader. Estas herramientas vienen empaquetadas junto con las definiciones de la placa SAMD de Arduino para el Arduino Zero.

Para instalar las definiciones de la placa Arduino SAMD, vaya a su administrador de la placa ( Herramientas > Placa > Gestor de tarjetas … ), luego busque una entrada “Arduino SAMD Boards (32-bits ARM Cortex-M0+)”. Selecciónela e instale la última versión (actualizada recientemente a 1.6.20).

La descarga e instalación de las herramientas puede demorar un par de minutos; en particular, arm-gcc llevará más tiempo, se trata de 250 MB sin comprimir.

Una vez instalado, el texto azul «INSTALLED» debe aparecer dentro de la entrada de la lista de placas SAMD.

Instalar la definición de la placa SparkFun

Ahora que sus herramientas ARM están instaladas, se requiere un último paso de configuración para agregar soporte para las placas SparkFun SAMD. Primero, abra sus preferencias de Arduino ( Archivo > Preferencias ). A continuación, busque el cuadro de texto Gestor de URLs adicionales de Tarjetas y pegue allí el siguiente enlace:

https://raw.githubusercontent.com/sparkfun/Arduino_Boards/master/IDE_Board_Manager/package_spark fun_index.json

Luego presione «OK«, y regrese al menú del Gestor de tarjetas. Debería encontrar una nueva entrada para las placas SAMD de SparkFun.

Esta instalación debería ser mucho más rápida; el trabajo pesado fue realizado en la sección anterior.

Seleccione la placa y el puerto serie

Una vez que se haya instalado la placa, debería ver algunas entradas nuevas en la lista Herramientas > Placa, incluida la Razor IMU M0 de SparkFun 9Do, en el menú «Placas SparkFun SAMD (ARM Cortex-M0 +) de 32 bits». Y finalmente, seleccione el puerto del IMI 9DoF Razor yendo al menú Herramientas > Puerto.

La plaqueta ya funcionará con el programa de ejemplo. En un próximo artículo cargaremos este programa de ejemplo, para comprobar el funcionamiento del bootloader, y podremos comenzar a realizar pruebas, cambiando el programa a gusto y escribir nuevos programas a medida de nuestro propio proyecto de detección de movimientos.

[ Continúa en la parte 2 ]



Sistema para estacionamiento de un auto y para evitar acercarse demasiado a otro vehículo

Utilizando sensores ultrasónicos, los autos modernos nos dan una útil ayuda en el momento de maniobrar, especialmente al estacionarlos en espacios limitado. Podemos hacer nuestro sistema detector con un Arduino UNO y unos pocos componentes de bajo costo


Cómo funciona el sensor ultrasónico HC-SR04

El sensor ultrasónico HC-SR04 nos permite medir distancias por medio de emisión y rebote de ultrasonidos. Para medir distancias con Arduino podemos hacerlo de diferentes maneras.

Por orden de costo, hay un sensor que mide con el rebote de un láser; luego un sensor de infrarrojos que utiliza el paralaje del regreso de un haz de luz para calcular la distancia; y por último el más barato, el sensor ultrasónico HC-SR04, muy utilizado con Arduino, que utiliza la velocidad de propagación del sonido para medir distancia.

Para que no sea molesto al oído humano, utiliza ultrasonido a una frecuencia de 40 kHz. Estas ondas sonoras tienen una frecuencia muy por encima del espectro audible por los seres humanos.
El sensor funciona como un sonar, por rebote de la onda. El emisor del HC-SR04 envía un tren de ondas ultrasónicas cuando se activa la señal de disparo (trigger). Este sonido se refleja contra el objeto y retorna. El receptor detecta el momento en que retorna la onda y lo indica en la salida eco (echo).

Midiendo el tiempo de viaje podemos calcular la distancia.

La velocidad del sonido en la atmósfera terrestre es de 343,2 m/s a 20° C de temperatura, con 50% de humedad y a nivel del mar. Si necesitamos una gran exactitud, podemos agregar al diseño sensores BMP180 o BMP280, que nos aportan datos de altitud y temperatura, e incluso agregar un medidor de humedad, y por supuesto aplicar una fórmula más compleja. Pero para este diseño no necesitamos tanta precisión.

La fórmula de la velocidad es:

velocidad = espacio/tiempo

De donde despejamos la variable espacio, que necesitamos conocer:

espacio = velocidad x tiempo

La velocidad es conocida: la del sonido. El tiempo lo obtenemos con el sensor ultrasónico. Con ambos datos, podemos calcular la incógnita: a qué distancia se encuentra un objeto.

El zumbador o buzzer

Para simular correctamente un medidor de distancia de un automóvil utilizamos un buzzer (zumbador) pasivo. No hay que confundirlo con el zumbador activo, que tiene un oscilador interno, y por lo tanto una frecuencia fija y polaridad en sus pines de conexión.

Este reproductor no tiene un rango tan amplio de emisión de sonido como el del oído humano, ni mucho menos, pero es suficiente para diferenciar la distancia con frecuencias diferentes dentro de lo que es capaz de emitir. Además de los pequeños (como el de la foto), que vienen incluidos en los kits de Arduino, hay otros con mayor diámetro de diafragma (por ejemplo en el desarme de viejos modems), que ofrecen más volumen y un rango de frecuencias más amplio.

Sistema de alerta con leds y zumbador

Si bien al maniobrar no estaremos mirando hacia un indicador, sino atentos a los tonos de aviso, agregaremos al diseño un sistema de alerta visual. Nos dará una indicación aún más efectiva de si estamos cerca o lejos de un obstáculo. Con tres leds (verde, amarillo y rojo) conseguimos determinar si estamos a distancia sin riesgo, acercándonos, o en zona de peligro. Pero se podría ampliar la indicación con más leds y más comparaciones en el programa.

Componentes:

Arduino UNO, protoboard, cables para conexiones, resistores de 330 Ω, led verde, led amarillo, led rojo, sensor ultrasónico Arduino (HC-SR04), buzzer




Circuito:

Los resistores son de 330 Ω y van en serie con los LEDs. El sensor ultrasónico se conecta a dos pines digitales, uno para el trigger o disparador y otro para el echo, o receptor. El buzzer se conecta a una salida PWM y a GND. La salida PWM entregará distintas frecuencias según la indicación del programa, por medio de la función tone().

Programando el detector de distancia

Diagrama del programa

Los umbrales para la decisión se fijan como constantes, uno para cada situación. Podemos medir la distancia con una regla y determinarlos.

■ UmbralAlejado: está en zona verde desde 50 cm a 30 cm.
■ UmbralMedio: está en zona amarilla, desde 30 cm a 10 cm.
■ UmbralCerca: está en zona roja, menos de 10 cm.

Estos umbrales no son definitivos: se pueden cambiar a gusto del usuario.

El programa debe analizar la medición dividida en 4 zonas: fuera de rango (más de 50 cm, ninguna indicación), entre 50 cm y 30 cm (zona verde), entre 30 cm y 10 cm (zona amarilla), entre 10 cm e impacto (zona roja).

■ Luego de medir la distancia se la compara con el umbral que indica fuera de rango (50 cm).
■ Si la distancia es menor a ese valor está en zona verde: se enciende el led verde y emite el tono de 2000 c/s.
■ Si la distancia es menor a 30 cm y mayor a 10 cm está en zona amarilla: enciende el led amarillo y emite el tono de 2500 c/s.
■ Si la distancia es menor a 10 cm está en zona roja: enciende el led rojo y emite el tono de 3000 c/s.

Programa

Para esta determinación de rangos, es importante buscar en la hoja de especificaciones técnicas el rango de funcionamiento del sensor de ultrasonidos que disponemos. Para este artículo se usó uno que puede medir de 2 cm a 400 cm.

Artículos relacionados:

VL53L0X: Sensor de distancia que mide por la velocidad de la luz (Time-of-Fly)

Dando a los vehículos autónomos una “visión eléctrica” más aguda

Módulo de emisor piezoeléctrico pasivo KY-006 (Kit de sensores Keyes 6)

RCWL-0516: Módulo sensor de movimiento de microondas con radar Doppler



LSM6DSOX: acelerómetro y giroscopio con aprendizaje automático incorporado

STMicroelectronics acaba de lanzar su último circuito integrado sensor, el LSM6DSOX, que proporciona datos del sensor sobre la aceleración y la orientación. Además, también puede procesar estos datos mediante aprendizaje automático sin ninguna entrada externa del microcontrolador.

El LSM6DSOX es un encapsulado SiP (sistema empaquetado en un chip) de 2,5 mm x 3 mm x 0,83 mm.

Un SiP es un sistema o subsistema electrónico funcional que incluye dos o más matrices semiconductoras heterogéneas (a menudo de nodos de tecnología diferentes optimizados para sus funcionalidades individuales), generalmente con componentes pasivos. La forma física del SiP es un módulo y, dependiendo de la aplicación final, el módulo podría incluir un chip lógico, memoria, dispositivos pasivos integrados (IPD), filtros de RF, sensores, disipadores de calor, antenas, conectores y/o chip de potencia.

La creciente complejidad de los dispositivos de gama baja está dando lugar a una nueva forma de procesamiento de datos. En lugar de que un controlador principal realice todo el trabajo pesado, los periféricos conectados pueden tener controladores integrados y DPS que pueden preprocesar sus propios datos antes de pasar al controlador principal, que puede descargar el trabajo del controlador principal, lo que ahorra energía. Un ejemplo de esto es el LSM6DSOX, el último módulo inercial de ST que tiene capacidades de aprendizaje automático.

El LSM6DSOX

El LSM6DSOX es un acelerómetro 3D y un giroscopio 3D siempre encendidos. Se puede acceder al sensor a través de SPI e I2C, así como al último estándar de la industria, I3C. El sensor es compatible con Android para la integración con sistemas Android (como tablets y teléfonos).

También incorpora detección significativa de movimiento y detección de inclinación. El movimiento de inclinación incorporado en el sensor es capaz de desencadenar eventos durante los cambios de inclinación. Por ejemplo, un evento puede activarse cuando un usuario tiene su teléfono en el bolsillo y se levanta después de haberse sentado. Esta detección de inclinación se realiza todo en hardware sin la necesidad de un controlador, lo que puede reducir en gran medida el trabajo de potencia y descarga de un procesador.

Núcleo de aprendizaje automático en el LSM6DSOX

Sin embargo, la verdadera magia detrás del LSM6DSOX es el sistema interno de aprendizaje automático. El núcleo de aprendizaje automático, realizado mediante una serie de condiciones «si-luego-si no», permite la identificación de tareas específicas, como caminar, correr y conducir, que son programables por el usuario.

Con hasta 256 nodos disponibles, el núcleo de aprendizaje automático puede ejecutar hasta ocho flujos simultáneamente y cada flujo puede generar hasta 16 resultados. El sensor también puede tener en cuenta sensores externos con el uso de un núcleo de sensores (Sense Hub), por donde otros sensores pueden enviar sus datos al LSM6DSOX.

Conexión de sensores externos al LSM6DSOX

«El aprendizaje automático ya se usa para el reconocimiento rápido y eficiente de patrones en redes sociales, modelos financieros o manejo autónomo», dijo Andrea Onetti, vicepresidente de analógicos, MEMS y sensores del Grupo STMicro. «El sensor de movimiento LSM6DSOX integra capacidades de aprendizaje automático para mejorar el seguimiento de la actividad en teléfonos inteligentes y dispositivos portátiles».





Especificaciones:

Cápsula de 2,5 mm x 3 mm x 0,83 mm
Consumo de energía de 0,55 mA.
FIFO (First In First Out = acrónimo que significa «primero en entrar, primero en salir») de hasta 9KB
±2 / ±4 / ±8 / ±16 g escala completa
±125 / ±250 / ±500 / ±1000 / ±2000 dps (degrees per second, grados por segundo) escala completa

La integración de controladores pequeños y de baja potencia en los periféricos da paso a un cambio en la forma en que se diseña el hardware. Al descargar la mayor cantidad de trabajo posible de un procesador principal (que puede no ser el hardware con mayor ahorro de energía), los dispositivos podrían ver un mayor rendimiento con datos preprocesados y una mayor duración de la batería.

Módulo de llave pulsadora – KY-004 (Kit de sensores Keyes 4)

Bien, yo hubiese obviado hacer un artículo sobre este módulo: es un pulsador, lo mismo que tomar dos cables y unirlos para enviar una señal. Pero bueno, es parte del kit de “sensores” para Arduino, es el que sigue en orden en la secuencia númerica de Keyes, así que aquí está.

El módulo Keyes KY-004 es una plaqueta con un pulsador y una resistencia que, cuando no se pulsa el interruptor, mantiene la línea en 0V, y cuando se lo pulsa envía un nivel alto. Si no estuviese el resistor, la línea de entrada de un microcontrolador quedaría flotante, y por una entrada flotante ingresa ruido. Es decir, no se puede saber qué puede leer el microcontrolador si uno quiere ingresar ese dato.

Módulo KY-004:

El módulo consta de un interruptor táctil o botón pulsador FZ1713 y una resistencia.

Capacidad del contacto: 50mA 12V CC
Temperatura: -25° C a 105° C
Vida de los contactos: 100.000 ciclos.
Fuerza de operación: 180/230 ± 20gf
Dimensiones: 18,5 mm x 15 mm

Conexión:

La línea central se conecta a +5V, la línea marcada con un signo a GND, y la salida está marcada con la letra S. Para conectarlo al Arduino se une a la línea digital 2 de la plaqueta.

Módulo de llave pulsadora – KY-004: Dibujo de la pieza para el editor Fritzing

Artículos relacionados:

Módulo sensor de temperatura KY-001 (Kit de sensores Keyes 1)
Módulo detector de vibración KY-002 (Kit de sensores Keyes 2)
Módulo de Sensor Magnético por efecto Hall KY-003 (Kit de sensores Keyes 3)
Módulo de llave pulsadora – KY-004 (Kit de sensores Keyes 4)
Módulo sensor de temperatura KY-005 (Kit de sensores Keyes 5)
Módulo de emisor piezoeléctrico pasivo KY-006 (Kit de sensores Keyes 6)
Módulo codificador rotativo KY-040 [ó KY-007] – (Kit de sensores Keyes 040/007)




KY-003 Módulo de Sensor Magnético por efecto Hall (Kit de sensores Keyes 3)

Descripción:

El detector magnético Keyes KY-003 contiene un circuito integrado 3144UA-S diseñado para detectar campos magnéticos. Cuando se le aproxima el campo magnético de un objeto (por ejemplo un imán) indica esta detección cerrando a tierra el pin «S«, que es el colector de un transistor NPN sin resistor de polarización. El método de funcionamiento está basado en el efecto Hall.

El pin «S» es el de la señal de detección y corresponde al pin de la derecha de la foto de arriba, el pin del centro es el positivo de la alimentación, y el pin de la izquierda es el negativo (marcado “”).

Diagrama de conexiones del módulo:

Especificaciones:

■ La tensión de trabajo es desde 4,5 a 24 Voltios VDC
■ Consume 3 mA en reposo y 8 mA cuando detecta un campo magnético
■ La tensión de la señal de salida depende de la conexión del resistor de polarización (pull-up): 3,3V, 5V
■ La temperatura de trabajo va desde -40 a 85 grados C.
■ Dimensiones: 18,5 mm x 15 mm

3144EUA-S : Integrado de medición de campo magnético por efecto Hall

El circuito integrado 3144EUA-S, sensible al magnetismo por efecto Hall, y en esta versión comercial puede operar a temperaturas de hasta 85º C. El sensor está diseñado como un interruptor que se enciende/apaga en presencia de un campo magnético. Colocando un imán cerca de él, su salida se activará. La polaridad del campo magnético influye en la acción de conmutación.

El dispositivo incluye un regulador de voltaje interno que le permite operar con voltajes de alimentación de 4,5 a 24 voltios, diodo de protección de inversión de batería, generador de voltaje Hall cuadrático, circuito de compensación de temperatura, amplificador de pequeña señal, disparador Schmitt y salida de colector abierto que puede conducir hasta 25 mA. Con la salida adecuadamente polarizada por un resistor, se puede utilizar con circuitos lógicos bipolares o CMOS.

El A3144– es un reemplazo mejorado para el UGN/UGS3120–. El primer carácter del sufijo del número de pieza determina el rango de temperatura de funcionamiento del dispositivo.

El sufijo ‘E–’ es para el rango de temperatura industrial y automotriz de -40 ° C a + 85 ° C.

Características y beneficios

■ Superior estabilidad a la temperatura para aplicaciones automotrices o industriales
■ Operación de 4,5 V a 24 V. Solo necesita un suministro no regulado
■ Salida de colector abierto de 25 mA. Compatible con lógica digital
■ Protección contra inversión de la alimentación
■ Se activar con imanes permanentes pequeños disponibles comercialmente
■ Confiabilidad por ser de estado sólido
■ Tamaño pequeño
■ Resistente al estrés físico

Diagrama de conexión

No es necesario un Arduino para obtener una lectura de este sensor, ya que se puede conectar un led con un resistor que asegure que no circule más corriente que la que puede manejar el integrado (que es de 25 mA).

El sensor se puede conectar de manera directa con este circuito:

El led se encenderá cuando el sensor sea activado por un campo magnético.

Pero si necesita ingresar la señal a un sistema microcontrolado, conecte la línea de alimentación (centro) a +5 y tierra () a GND. Conecte la señal (S) al pin digital 2 en el Arduino.

Con este circuito el Arduino encenderá el LED incluido en la placa Arduino cuando se detecte un campo magnético.

Código de ejemplo




KY-003 Módulo de Sensor Magnético por efecto Hall: Dibujo de la pieza para el editor Fritzing

Artículos relacionados:

Módulo sensor de temperatura KY-001 (Kit de sensores Keyes 1)
Módulo detector de vibración KY-002 (Kit de sensores Keyes 2)
Módulo de Sensor Magnético por efecto Hall KY-003 (Kit de sensores Keyes 3)
Módulo de llave pulsadora – KY-004 (Kit de sensores Keyes 4)
Módulo sensor de temperatura KY-005 (Kit de sensores Keyes 5)
Módulo de emisor piezoeléctrico pasivo KY-006 (Kit de sensores Keyes 6)