Archivo de la categoría: Software

¿Qué es la comunicación serie?

La electrónica integrada se conforma con circuitos interconectados (procesadores u otros circuitos integrados) para crear un sistema en el que están repartidas las funciones. Para que esos circuitos individuales intercambien su información, deben compartir un protocolo de comunicación común. Se han definido muchos protocolos de comunicación para lograr este intercambio de datos y, esencialmente, cada uno puede ubicarse en una de dos categorías: 1. Paralelo o 2. Serie.

Paralelo versus serie

Las interfaces paralelas transfieren múltiples bits simultáneamente. Por lo general, requieren barras (buses) de datos, que se transmiten a través de ocho, dieciséis o más cables. Los datos se transfieren en amplios oleajes de 1s y 0s.

Un bus de datos de 8 bits, controlado por un reloj,
que transmite un byte por cada pulso de reloj. Se utilizan 9 líneas


En cambio, las interfaces serie transmiten sus datos un bit a la vez. Estas interfaces pueden operar con tan solo un cable, por lo general nunca más de cuatro.

Ejemplo de una interfaz serie, transmitiendo un bit cada pulso de reloj. Solo se requieren 2 cables


Piense en las dos interfaces como una fila de automóviles: una interfaz paralela sería una autopista de 8 carriles o más, mientras que una interfaz en serie es más parecida a una carretera de dos carriles. Durante un lapso determinado, la autopista tiene el potencial de llevar a más personas a destino, pero en muchos casos ese sistema sencillo de dos carriles responde a su propósito, y construirlo cuesta una fracción de los fondos.

La comunicación paralela ciertamente tiene sus beneficios. Es rápida, directa y relativamente fácil de implementar. Pero requiere muchas más líneas de entrada/salida (E/S). Si alguna vez ha tenido que traspasar un proyecto de un Arduino Mega a un Arduino UNO básico, sabe que las líneas de E/S en un microprocesador pueden ser preciosas por lo limitadas. Por lo tanto, cada vez más optamos por la comunicación en serie, sacrificando una velocidad potencial para ahorrar pines.

Serie asíncrono (asincrónico)

A lo largo de los años, se han creado docenas de protocolos en serie para satisfacer las necesidades particulares de los sistemas integrados. USB (Universal Serial Bus = Bus Serie Universal) y Ethernet son dos de las interfaces serie de computación más conocidas en la actualidad. Otras interfaces serie muy comunes son SPI (del inglés Serial Peripheral Interface), I²C (del inglés Inter-Integrated Circuit) y el interfaz serie estándar TX/RX, del que hablaremos aquí. Estas interfaces serie pueden clasificarse en uno de dos grupos: sincrónico o asincrónico.

Una interfaz serie sincrónica siempre necesita tener una señal de reloj junto a las líneas de datos, por lo que todos los dispositivos en un bus serie sincrónico comparten un pulso común de reloj. Esto hace que en una transferencia en serie más directa, a menudo más rápida, también se requiera al menos un cable adicional entre los dispositivos de comunicación. Entre los ejemplos de interfaces sincrónicas están SPI e I²C.

Asincrónico significa que los datos se transfieren sin el respaldo de una señal de reloj conectada entre sistemas. Este método de transmisión es ideal para minimizar los cables necesarios, y en consecuencia la cantidad de pines de E/S utilizados, pero implica que debemos poner un poco de esfuerzo adicional en transferir y recibir datos de manera confiable. El protocolo en serie que analizaremos es la forma más común para las transferencias asincrónicas. De hecho, es tan común que cuando la mayoría de la gente dice «en serie», “o serial”, están hablando sobre este protocolo.

El protocolo serie sin reloj que analizaremos se usa ampliamente en electrónica integrada. Si está buscando agregar un módulo serie GPS, Bluetooth, XBee, LCD, o muchos otros dispositivos externos a su proyecto, es probable que necesite un interfaz serie.

Reglas de la comunicación serie

El protocolo serie asincrónico tiene una serie de reglas integradas: mecanismos que ayudan a garantizar transferencias de datos sólidas y sin errores. Estos mecanismos, que obtenemos para evitar la señal del reloj externo, son:

   ■ Bits de datos
   ■ Bits de sincronización
   ■ Bits de paridad
   ■ Velocidad en baudios

Teniendo en cuenta la variedad de estos mecanismos de señalización, vemos que no hay una sola manera de enviar datos en serie. El protocolo es altamente configurable. La parte crítica es asegurarse de que ambos dispositivos en una línea serie estén configurados para usar exactamente los mismos protocolos.

Velocidad en baudios

La especificación de velocidad de transmisión indica qué tan rápido se envían los datos a través de una línea serie. Normalmente se expresa en unidades de bits por segundo (bps). Si se invierte la velocidad en baudios, se puede averiguar cuánto tiempo se tarda en transmitir cada bit. Este valor determina durante cuánto tiempo el transmisor mantiene en alto/bajo una línea serie, o a qué velocidad muestrea su línea el dispositivo receptor.

Las velocidades en baudios pueden ser casi cualquier valor dentro de lo que permite el hardware. El único requisito es que ambos dispositivos funcionen a la misma velocidad. Una de las velocidades en baudios más comunes, especialmente para cosas simples donde la velocidad no es crítica, es de 9600 bps. Otras velocidades en baudios «estándar» son 1200, 2400, 4800, 19200, 38400, 57600 y 115200.

Cuanto mayor sea la velocidad en baudios, más rápido se envían/reciben los datos, pero existen límites para la velocidad a la que se pueden transferir los datos. Por lo general, no verá velocidades superiores a 115200, lo que es suficientemente rápido para la mayoría de los microcontroladores. Aumente demasiado y comenzará a ver errores en el extremo receptor, ya que los pulsos de reloj y los períodos de muestreo no pueden mantenerse.

Estructurando los datos

Cada bloque de datos (generalmente un byte) que se transmite se envía en realidad en un paquete de bits. Los paquetes se crean agregando bits de sincronización y paridad a nuestros datos.

Algunos símbolos en la estructura del paquete tienen tamaños de bits que son configurables.

Vamos a entrar en los detalles de cada una de estas partes de la estructura del paquete, o bloque.

Bloque de datos

La verdadera sustancia de cada paquete serie es la información que lleva. Ambiguamente llamamos a este bloque de datos un “bloque”, porque su tamaño no está específicamente establecido. En este estándar, la cantidad de datos en cada paquete se puede establecer en valores de 5 a 9 bits. Ciertamente, el tamaño de datos clásico es un byte de 8 bits, pero se usan otros tamaños. Un bloque de datos de 7 bits puede ser más eficiente que 8 si solo está transfiriendo caracteres ASCII de 7 bits.

Después de acordar la longitud para un caracter, ambos dispositivos serie también tienen que acordar el formato de sus datos. ¿Se envían los datos desde el bit más significativo (most significative bit = msb) al menos significativo, o viceversa? Si no se indica lo contrario, generalmente se puede asumir que los datos se transfieren enviando primero el bit menos significativo (least significative bit = lsb).

Bits de sincronización

Los bits de sincronización son dos o tres bits especiales transferidos con cada porción de datos. Son el bit de inicio y el(los) bit(s) de parada. Tal como indica su nombre, estos bits marcan el principio y el final de un paquete. Siempre hay un único bit de inicio, pero la cantidad de bits de parada se puede configurar en uno o dos (aunque normalmente se deja en uno).

El bit de inicio siempre se indica mediante una línea de datos inactiva que pasa de 1 a 0 (ALTO a BAJO). Los bits de parada volverán al estado inactivo manteniendo la línea en 1 (ALTO).

Bits de paridad

La paridad es una forma de comprobación de errores muy simple y de bajo nivel. Se presenta en dos variantes: impar o par. Para generar el bit de paridad, se suman todos los bits del byte de datos (5 a 9), y el resultado de la suma define si el bit es 1 o 0. Por ejemplo, suponiendo que la paridad se establece en par y se agrega a un byte de datos como 0b01011101, que tiene una cantidad impar de 1s (5), el bit de paridad quedaría en 1. Por el contrario, si el modo de paridad se configuró en impar, el bit de paridad sería 0.

La paridad es opcional, y no se usa mucho. Puede ser útil para transmitir a través de medios ruidosos, pero también ralentizará un poco la transferencia de datos y requiere que tanto el transmisor como el receptor implementen el manejo de errores (generalmente, si se detecta error, los datos recibidos con falla deben reenviarse).

Un ejemplo

9600 8N1 – 9600 baudios, 8 bits de datos, sin paridad y 1 bit de parada: es uno de los protocolos serie más utilizados. Entonces, ¿cómo se vería un paquete o dos de datos de 9600 8N1?

Un dispositivo que transmita los caracteres ASCII ‘O’ y ‘K’ tendría que crear dos paquetes de datos. El valor ASCII de O (en mayúsculas) es 79, que se divide en un valor binario de 8 bits de 01001111, mientras que el valor binario de K es 01001011. Todo lo que queda es agregar bits de sincronización.

No se establece específicamente, pero la norma más aceptada es que los datos se transfieren enviando primero el bit menos significativo. Observe cómo se envía cada uno de los dos bytes a medida que se lee de derecha (bit 0) a izquierda (bit 7).

Dado que estamos transfiriendo a 9600 bps, el tiempo empleado en mantener cada uno de esos bits alto o bajo es 1/9600 (bps) o 104 µs por bit.

Por cada byte de datos transmitidos, en realidad como mínimo se envían 10 bits: un bit de inicio, 8 bits de datos y un bit de parada. Entonces, a 9600 bps, en realidad estamos enviando 9600 bits por segundo o 960 (9600/10) bytes por segundo.

Ahora que sabemos cómo construir paquetes serie, podemos pasar a la sección de hardware. Allí veremos cómo esos 1s y 0s, y la velocidad de transmisión, se implementan a un nivel de señal.

Cableado y Hardware

Un bus serie consta de solo dos cables, uno para enviar datos y otro para recibir. Entonces, los dispositivos serie deben tener dos pines serie: el receptor: RX y el transmisor: TX.

Cableado en serie

Es importante tener en cuenta que esas etiquetas RX y TX son con respecto al dispositivo en sí. Entonces, el RX de un dispositivo debe ir al TX del otro y viceversa. Es extraño si uno está acostumbrado a conectar Vcc con Vcc, GND con GND, MOSI con MOSI, etc., pero —pensándolo— tiene sentido. El transmisor debe estar comunicándose con un receptor, no con otro transmisor.

Una interfaz en serie en la que ambos dispositivos pueden enviar y recibir datos es dúplex completo (full-duplex) o semidúplex. Full-duplex significa que ambos dispositivos pueden enviar y recibir simultáneamente. La comunicación semidúplex significa que los dispositivos serie deben turnarse para enviar y recibir.

Algunas conexiones serie pueden implementarse con una sola línea entre un dispositivo de transmisión y un dispositivo de recepción. Por ejemplo, los LCD que tienen conexión serie son solo receptores, y realmente no tienen ningún tipo de información para devolver al dispositivo de control. Esto es lo que se conoce como comunicación serie simplex. Todo lo que necesita es un solo cable desde la transmisión del dispositivo maestro a la línea RX del que recibe.





Implementación de hardware

Hasta ahora fue una cobertura de la comunicación serie asíncrona desde un lado conceptual. Sabemos qué cables necesitamos, pero, ¿cómo se implementa realmente la comunicación en serie a nivel de señal? En una variedad de formas, en realidad. Hay todo tipo de estándares para la comunicación en serie. Veamos algunas de las implementaciones de hardware más populares de serie: nivel lógico o TTL, y RS-232.

Cuando los microcontroladores y otros circuitos integrados de bajo nivel se comunican en serie, generalmente lo hacen a un nivel TTL (Transistor Transistor Logic = Lógica Transistor-Transistor). Las señales serie TTL están en el rango del voltaje que alimenta a un microcontrolador, generalmente de 0V a 3,3V, 0V o 5V. Una señal en el nivel VCC (3,3V, 5V, etc.) indica una línea inactiva, un bit de valor 1 o un bit de parada. Una señal de 0V (GND) representa un bit de inicio o un bit de datos de valor 0.

El protocolo RS-232, que se puede encontrar en algunas de las computadoras y periféricos más antiguos, es como una interfaz serie TTL puesta cabeza abajo. Las señales RS-232 generalmente oscilan entre -13V y 13V, aunque la especificación permite cualquier cosa desde +/- 3V a +/- 25V. En estas señales, un voltaje bajo (-5V, -13V, etc.) indica la línea inactiva, un bit de parada o un bit de datos de valor 1. Una señal RS-232 alta significa un bit de inicio o un bit de datos de valor 0. Eso es lo contrario del protocolo TTL.

Entre los dos estándares de señal en serie, el TTL es mucho más fácil de implementar en circuitos integrados. Sin embargo, los niveles de baja tensión son más susceptibles a sufrir pérdidas en las líneas de transmisión largas. El RS-232 o estándares más complejos —como RS-485— son más adecuados para transmisiones en serie de largo alcance.

Cuando conecte dos dispositivos serie juntos, es importante asegurarse de que coincidan los voltajes de su señal. No se puede conectar directamente un dispositivo serie TTL con una línea RS-232. Se deben adaptar esas señales.

Continuando, exploraremos la herramienta que usan los microcontroladores para convertir sus datos que se encuentran presentes en un bus paralelo desde y hacia una interfaz serial: se llama UART.

UARTs

La última pieza de este armado en serie es encontrar algo para crear los paquetes en serie y controlar las líneas de hardware físico. Esto se concreta con un módulo llamado UART (Universal Asynchronous Receiver/Transmiter = Receptor/Transmisor Asíncrono Universal).

Un receptor/transmisor asíncrono universal es un bloque de circuitos responsable de implementar la comunicación en serie. En esencia, este UART actúa como un intermediario entre las interfaces paralelas y seriales. En un extremo del UART hay un bus de ocho o más líneas de datos (más algunos pines de control), en el otro lado están los dos cables serie: RX y TX.

UART simplificado
UART
Los UART existen como circuitos integrados independientes, pero en la actualidad es más común que se encuentren dentro de los microcontroladores. Debemos consultar la hoja de datos de un microcontrolador para ver si tiene algún UART. Algunos no tienen, otros tienen uno, otros tienen varios. Por ejemplo, el Arduino UNO, basado en el «antiguo y fiel» ATmega328, tiene un solo UART, mientras que el Arduino Mega, construido sobre un ATmega2560, tiene cuatro UART.

Como lo indican las letras R y T en el acrónimo, los UART son responsables de enviar y recibir datos en serie. En el lado de transmisión, un UART debe crear el paquete de datos —agregando la sincronización y los bits de paridad— y enviar ese paquete por la línea TX con una sincronización precisa (de acuerdo con la velocidad de transmisión establecida). En el extremo de recepción, el UART tiene que muestrear la línea de RX a velocidades acordes con la velocidad de transmisión que se espera, seleccionar los bits de sincronización y entregar como resultado los datos.

UART interno

Los UART más avanzados pueden enviar los datos que reciben a un archivo de memoria de respaldo, llamado búfer, donde pueden permanecer hasta que el microcontrolador vaya a buscarlos. Los UART generalmente publicarán sus datos almacenados en un búfer con un sistema de “el primero que entra es el primero que sale” (First In First Out = FIFO). Los búfer pueden tener apenas unos pocos bits, o pueden ser de gran tamaño, como miles de bytes.

Diagrama de bloques de un UART con FIFO


UARTs de software

Si un microcontrolador no tiene un UART, o no tiene suficientes, se puede implementar la interfaz en serie en bits que son controlados directamente por el procesador. Este es el enfoque que tienen las bibliotecas de Arduino como SoftwareSerial. El uso de bits es intensivo en el procesador, y no suele ser tan preciso como un UART, pero funciona en caso de necesidad.

Errores comunes

Eso fue todo lo básico sobre la comunicación en serie. Podemos dejar señalados algunos errores comunes que un ingeniero, de cualquier nivel de experiencia, puede llegar a cometer:

RX a TX, / TX a RX

Parece bastante simple, pero es un error que algunos cometen un par de veces. Por mucho que desee que sus etiquetas coincidan, siempre asegúrese de cruzar las líneas RX y TX entre los dispositivos serie.

FTDI Basic programando un Pro Mini. Note que RX y TX están cruzados


Discrepancia en la velocidad de transmisión

Los valores de baudios son como claves en lenguajes de la comunicación en serie. Si dos dispositivos no están hablando a la misma velocidad, los datos pueden ser mal interpretados o completamente perdidos. Si todo lo que el dispositivo receptor ve en su línea de recepción está compuesta de caracteres extraños, llamados “basura” en el ambiente, verifique que coincidan las velocidades en baudios definidas en ambos extremos.

Datos transmitidos a 9600 bps, pero recibidos a 19200 bps. Desajuste de baudios = basura


Contención de transferencia en la línea

La comunicación en serie está diseñada para permitir que solo dos dispositivos se comuniquen a través de un bus en serie. Si más de un dispositivo está intentando transmitir en la misma línea serie, podría encontrarse con una contención de bus.

Por ejemplo, si está conectando un módulo GPS a su Arduino, puede conectar la línea de transmisión de ese módulo a la línea RX de Arduino. Pero ese pin Arduino RX ya está conectado al pin TX del convertidor de USB a serie (por ejemplo un chip FTDI) que se usa cada vez que se programa el Arduino, o se usa el Monitor Serie. Esto establece la situación potencial en la que tanto el módulo GPS como el chip FTDI intentan transmitir en la misma línea al mismo tiempo.

Ejemplo de contención de línea (o bus)

No es bueno que dos dispositivos intenten transmitir datos al mismo tiempo en la misma línea. En el mejor de los casos, ninguno de los dispositivos podrá enviar sus datos. En el peor de los casos, las líneas de transmisión de ambos dispositivos se volverán locas (aunque eso es raro y generalmente están protegidos contra esta situación).

Puede ser seguro conectar varios dispositivos receptores a un solo dispositivo de transmisión. Realmente no cabe dentro de las especificaciones, y probablemente esté mal visto por un ingeniero experimentado, pero funcionará. Por ejemplo, si conectamos un LCD serie a un Arduino, el método más sencillo puede ser conectar la línea RX del módulo LCD a la línea TX del Arduino. El TX de Arduino ya está conectado a la línea RX del programador USB, pero eso deja solo un dispositivo controlando la línea de transmisión.

Implementación segura pero dudosa de un transmisor y dos receptores

La distribución de una línea de transmisión de este tipo puede ser peligrosa desde la perspectiva del firmware, ya que no puede elegir qué dispositivo recibe cual transmisión. La pantalla LCD terminará recibiendo datos que no están destinados a ella, lo que podría ordenarle que pase a un estado desconocido.

Hay formas de implementarlo, usando un poco de hardware adicional, pero esto es tema para otro artículo.



Manejo preciso de servos en Arduino: grados y milisegundos

Siendo miembro de grupos donde uno se entera de diversos problemas que se les presentaron a otros, a veces uno que resulta básico pero nunca se le ha presentado. En este caso se trató de un problema con el manejo de un servo que es el más vendido para los que se inician, y que a demás viene con los kits básicos de Arduino: el mini o micro servo SG90. El problema se presenta con la biblioteca Servo, pero también puede ocurrir con otro programa.

Me dije —ya que he manejado servos desde antes de que apareciera Arduino— que el problema debía ser una señal de posicionamiento incorrecta. Para entender bien de qué hablo, le pueden dar una mirada al artículo Servos: características básicas.

Una señal se comprueba con osciloscopio. Por suerte dispongo tanto de uno antiguo, con pantalla CRT, como de los que se pueden comprar ahora dentro de la familia Arduino, dotado de un pantalla TFT.

Después de algunas mediciones, me di cuenta de que el funcionamiento de la biblioteca Servo.h de Arduino deja un poco que desear, ya veremos por qué. Pero también ofrece una herramienta (en la función servo.attach) que, bueno, puede ser que no hayamos investigado y que por algo está disponible. Esto puede parecer algo para principiantes, pero hasta que uno empieza a tener estas complicaciones no se da cuenta, y luego de tener una comprensión mejor se logra usar la biblioteca de servo de Arduino con facilidad y dominando lo que hace.

Función write()

La razón de ser de una biblioteca es que uno se pueda desentender del manejo de programa específico de un elemento conectado a una placa de microcontrolador, y bueno, la biblioteca Servo de Arduino fue hecha para facilitar el control de los servos con un mínimo de código y complicaciones. La página de referencia de Arduino para el comando write(), que es parte de la biblioteca Servo.h, trae el siguiente código de ejemplo:

Este código de ejemplo le indica a un servo, conectado en este caso al pin 9, que se mueva a su posición central (que se define como 90°). Si se tratara de un servo de rotación continua, esto detendrá el movimiento del servo… pero este es tema para otro artículo.

Al correr este pequeño programa de demostración, los servos que se han conectado a ese pin se colocarán en sus posiciones centrales. Pero bueno, si lo consideramos desde la faceta mecánica, este punto medio puede que en algunos servos no sea exactamente el centro del arco completo del recorrido.

Un pulso con un ancho de 1.500 microsegundos debe corresponder a 90°, posición definida como el punto central del recorrido. Los servos más comunes aceptan entradas de 1.000 µs (1 ms) a 2.000 µs (2 ms), y 1.500 µs (1,5 ms) correspondientes a la posición central. Para un servo con un recorrido de 0 a 180°, esto sería 90°.





Ahora me toca aclarar que siempre utilicé valores en microsegundos para controlar servos, ya que la precisión del posicionamiento es mucho mayor. La biblioteca de servos permite usar el comando writeMicroseconds, que define el ancho de pulso exacto que se desea enviar a un servo. Los problemas comienzan cuando se usan ejemplos —ya escritos— en los que se utiliza el comando de escritura con un parámetro en grados (en el ejemplo de arriba, 90°).

Parecería lógico que un comando de escritura que instruye a un servo para que se ajuste a 90° debería enviar los mismos pulsos que un comando writeMicroseconds que envía pulsos de 1.500 µs. Es decir, write(90) y writeMicroseconds(1500) deberían enviar pulsos idénticos de 1500 µs. Pero resulta que esta suposición puede llevarnos a problemas.

Basándome en un ejemplo de internet, subí el siguiente código a un Arduino UNO R3, y visualicé las señales con osciloscopio.

Aquí es cómo se ven las salidas de los pines 3, 4 y 5:

■ El pin 3 de Arduino, fijado en 90°, da un pulso de 1,472 ms
■ El pin 4 de Arduino produce un pulso de 1.500 µs: 1,500 ms
■ El pin 5 de Arduino, fijado en 90°, da un pulso de 1,500 ms

El ancho de pulso se mide con el programa del osciloscopio. Por las dudas de que sea un problema técnico del osciloscopio, midiendo con un papel superpuesto sobre la pantalla se puede observar que sí existe la diferencia.

Y también al superponer señales, se observa la diferencia.

Esta diferencia entre 1.472 µs y 1.500 µs es pequeña y puede ser que ni siquiera implique diferencias en las posiciones del servo.

Si se observa la señal de servo3, que también programa el movimiento del servo con el parámetro de colocarse en posición de 90°, se nota que el ancho del pulso es correcto, 1.500 µs, el mismo que para servo2, para el que se fijó el pulso en forma directa en 1.500 µs.

El comando write(90) es el mismo en la primera y la tercera señal de servo, así que… ¿por qué uno envía un pulso de 1,472 ms y el otro 1,500 ms?

Arduino attach()

La respuesta está en el comando attach de la librería Servo. La página de referencia de Arduino enumera dos formas del comando:

La primera versión es el código mínimo que requiere un programa para designar un pin de E/S para el control de un servo. El segundo formato incluye dos parámetros muy importantes, pero opcionales, que determinan el rango mínimo y máximo de ancho de pulso para el programa. Es posible que en el ejemplo de arriba, el uso de límites en el segundo servo haya acomodado los valores de tiempo para que el tercero reciba un pulso correcto; pero al volver el bucle al principio y correr la función para 90º sin topes definidos, se vuelve a desacomodar.

Tanto en la página de referencia del comando attach en arduino.cc como en la propia biblioteca Servo, se establece claramente que las configuraciones mínimas y máximas predeterminadas son 544 y 2.400 µs, respectivamente. Pero como hay servos con diferentes extremos de carrera, se pueden fijar estos límites “opcionales” de ancho de pulso, que en realidad —para evitar dolores de cabeza y roturas de los servos— sería bueno acostumbrarse a usar.

Si uno está habituado a usar el comando writeMicroseconds en lugar de write, es posible que nunca haya pensado en los parámetros de ancho de pulso mínimo y máximo. Pero si se usa el comando write y se establecen las posiciones de los servos con ángulos y grados, entonces DEBEMOS definir explícitamente estos parámetros en los programas de Arduino que usan Servo.h, previa lectura de los datos indicados en la hoja de datos del servo utilizado. O si no, definiéndolos experimentalmente; porque hasta existen diferencias entre servos del mismo modelo.

Para definir los valores correctos de extremos de recorrido de un servo, puede utilizar un montaje como el que sigue, que se trata de una cartulina impresa y una aguja señaladora de cartón en el eje del servo, y enviar comandos con writeMicroseconds() hasta lograr el valor para el ángulo cero y el ángulo 180. El disco lo imprimí con un programa on-line muy útil para crear imágenes de discos de encoder.

Ingrese a esta página y pruebe primero con los siguientes parámetros:

Luego puede jugar con los valores hasta lograr el dibujo que usted necesite. Hay otras opciones en internet, incluso hay generadores de código postscript que se puede leer en Corel y que corren en Windows. Es cuestión de buscar.

Solución para la librería Servo

En el código de ejemplo, para la tercera señal de servo no dejaremos los anchos de pulso predeterminados y fijaremos los límites con los valores 1.000 y 2.000 µs. Esta es la razón por la que las señales del primero y tercer servo envían pulsos diferentes aunque se utilicen comandos idénticos.

Además de que no lograremos posicionamientos correctos de los servos con señales ligeramente descentradas, un servo podría interpretar de manera impredecible los anchos de pulso por encima o por debajo de los límites para los que fue diseñado. Los pulsos por debajo y por encima del límite también pueden dañar físicamente un servo.

Si un servo con recorrido de 0 a 180° está diseñado para responder a pulsos de 1.000-2.000 µs, interpretará 1.000 µs como 0°, y 2.000 µs como 180°. Pero, con un rango de límites de ancho de pulso predeterminado de 544 a 2.400 µs, el Arduino enviará una señal de ~1.000 µs para un ángulo de 44°. Un rango de pulsos de 1.000 a 2.000 µs se convertirá en un recorrido mecánico total de ~90° del eje del servo en lugar de 180°. Este y otros problemas potenciales pueden evitarse si se usan microsegundos en lugar de ángulos en grados, o si los parámetros opcionales de ancho de pulso para los extremos se definen en la configuración de pines para cada servo.

Es muy común que se dé por sentado que las bibliotecas de Arduino funcionan correctamente con sólo unos simples parámetros. La próxima vez que sus servos actúen de forma impredecible en un nuevo proyecto, vuelva a verificar que ha establecido los límites de ancho de pulso en la configuración del pin. Puede que con esto sea suficiente y se ahorre gran cantidad de tiempo.



Entendiendo ASCII en el desarrollo de lenguaje de máquina integrado

Este artículo, que sirve como preparación para una discusión de cadenas (strings) en lenguaje C, presenta el concepto de caracteres ASCII y explica dos beneficios de las técnicas de codificación basadas en ASCII.


Un microprocesador o microcontrolador es una colección compleja de circuitos que manipulan voltajes lógicos altos y voltajes lógicos bajos. Para mayor comodidad, nos referimos a estos voltajes como unos y ceros, y diseñamos los procesadores de manera que estos unos y ceros puedan manipularse en conjunto y tratarse como números binarios.

La mayoría de la gente se volvería loca o se quedaría dormida si se vieran obligados a observar el flujo interminable de números binarios dentro y fuera de un microprocesador. La tecnología computacional ha transformado la existencia humana porque estos números binarios se pueden usar para representar cosas que a las personas realmente les importan: música, fotografías o, en el caso del ASCII, letras y dígitos.

Entendiendo el ASCII

ASCII significa Código Estándar Americano para el Intercambio de Información (American Standard Code for Information Interchange = ASCII). En este código, un número binario significa exactamente un caracter, donde «caracter» se refiere a una letra mayúscula, una letra minúscula, un dígito, un signo de puntuación, o varias otras cosas que se pueden encontrar en un teclado. La siguiente tabla le brinda la «traducción» entre los números (aquí, escrita en notación decimal en lugar de binaria) y los caracteres ASCII correspondientes al alfabeto en mayúsculas y minúsculas.

(Nota: Quede claro que cuando en EEUU dicen “americano” se refieren a algo que se aplica solamente a ellos, no a toda América. Quedaba afuera, en principio, toda letra que no se usa en el inglés actual, letras con acentos, diéresis, circunflejo, tildes, y otras diferenciaciones fonéticas en otros idiomas, y por eso se creó la tabla de ASCII extendido, que está incluida más abajo).


Es esencial comprender que su microcontrolador no sabe nada acerca de las letras del inglés u otra lengua (y menos aún de los caracteres acentuados de diferentes maneras o especiales en cada idioma), los signos de puntuación o los dígitos. Su microcontrolador es una máquina muy pequeña, diseñada para procesar números binarios, y cualquier carácter que esté presente en su lenguaje de máquina (firmware) es simplemente su interpretación de los números binarios.

Se puede producir una seria confusión debido a la impresión errónea de que sus variables, o elementos de matriz, contienen realmente caracteres ASCII de una forma u otra. El desarrollo de firmware se vuelve más claro, más ágil y más flexible cuando uno se da cuenta de que los caracteres en realidad son números binarios, y se pueden almacenar, transferir y manipular como números binarios; no se convierten en caracteres ASCII hasta que esté todo listo para interpretarlos como caracteres ASCII.

ASCII Extendido

Beneficios y contras del ASCII

El ASCII es necesario para la programación humana. Hay muchas aplicaciones integradas que pueden beneficiarse del uso de caracteres ASCII, y creo que es una buena idea adquirir el hábito de reconocer situaciones en las que se puede incorporar caracteres ASCII en su código.




Un estándar ampliamente utilizado

Un beneficio innegable de ASCII es la estandarización. Los entornos de desarrollo integrado, los programas de terminal y los paquetes de software computacional comprenden el ASCII y, por lo tanto, los caracteres ASCII son una forma conveniente y efectiva de transferir y mostrar información.

En este ejemplo, una aplicación muestra una representación binaria basada en datos de un sensor:

Transferencia de datos confiable

Un beneficio más sutil, pero quizás igual de importante, es el hecho de que el ASCII proporciona un medio para representar información utilizando un conjunto restringido de números binarios. Cualquier valor numérico puede representarse mediante una secuencia de los dígitos ASCII del 0 al 9 (junto con el punto decimal ASCII si es necesario). Estos caracteres ASCII corresponden a un subconjunto muy pequeño de los 256 valores ofrecidos por un número binario de 8 bits. Pero ¿por qué esto importa?

Imagine que tiene una aplicación en la que un microcontrolador debe transferir mediciones impredecibles y altamente variables de sensores de 8 bits a una PC. Si se transfieren los datos como números binarios ordinarios, un byte individual puede contener un número cualquiera del 0 al 255. Esto nos deja sin una forma conveniente y sencilla de organizar datos o incorporar comandos en el flujo de datos, porque para transferir las mediciones en bruto solo son necesarios todos los números binarios posibles. El PC (y menos nosotros) no puede distinguir entre los datos de medición numéricos y otros tipos de información.

Si se transfieren los datos de medición utilizando caracteres ASCII en lugar de números binarios ordinarios, entran en juego los beneficios de un conjunto restringido. Solo se necesitan diez valores binarios (correspondientes a los dígitos ASCII del 0 al 9) para representar los datos numéricos, y varios otros valores binarios pueden reservarse para una funcionalidad especial, porque nunca aparecerán en los datos de medición.

Aquí, los dígitos ASCII se utilizan para transferir una lectura de temperatura. El final de cada lectura se identifica con un retorno de carro (abreviado CR = Carrier Return); el valor binario correspondiente a CR nunca aparecerá en los datos de medición.

Reducción de la eficiencia

El precio que se paga por esta estandarización y transferencia de datos mejorada es que se usa con menos eficiencia la memoria, el ancho de banda del procesador y el ancho de banda de la comunicación.

El ASCII es un sistema basado en bytes. Cada carácter requiere ocho bits, incluyendo, por ejemplo, el dígito «1», que en circunstancias binarias normales puede representarse mediante un número de 1 bit en lugar de un número de 8 bits.

En la experiencia de un programador actual, esto rara vez es un problema serio; los microcontroladores modernos tienen recursos de procesamiento y memoria que exceden con creces los requisitos de muchas aplicaciones. Sin embargo, si realmente se necesita maximizar el rendimiento o minimizar el uso de la memoria, es posible que debamos renunciar a la conveniencia de usar ASCII.

De ASCII a cadenas de caracteres

Este artículo no es solo una descripción general de ASCII sino también una introducción a la forma en que se maneja una representación basada en caracteres en el lenguaje de programación C. Nos referimos a este tipo de representación como una cadena (string), que es una secuencia o «encadenamienro» de caracteres ASCII.

Veremos más en detalle las cadenas en un próximo artículo.



Comprendiendo Variables al programar en C

Este es un análisis de la naturaleza y el uso de las variables en lenguaje C en el contexto de las aplicaciones para microcontroladores

Muchos de nosotros escuchamos la palabra «variable» en las clases de matemáticas mucho antes de saber mucho, si es que sabemos algo, acerca de la programación de computadoras. Una variable matemática es una cantidad cuyo valor no se conoce o no se limita a un número. Este uso es similar, aunque no idéntico, al concepto de una variable C.

Dos diferencias importantes: primero, en matemáticas, usualmente usamos una letra como x o y para representar una variable, mientras que en C usamos frecuentemente una palabra o frase descriptiva como contadorPulsos, velocidadMedia o cantidadVueltas. En segundo lugar, hay situaciones en las que usamos una variable de C para identificar una cantidad conocida y que no se pretende que cambie del valor original.

Variables en hardware

Las variables son convenientes e intuitivas para los programadores. Para el hardware computacional, por otro lado, no tienen un significado real. Los microprocesadores almacenan datos en registros y ubicaciones de memoria. Esta diferencia fundamental entre las personas que escriben el idioma de máquina y las máquinas que ejecutan este programa se supera mediante lenguajes de alto nivel como C, que maneja varios detalles asociados con la traducción entre variables basadas en texto y la realidad física de un procesador.

Los diseñadores de sistemas integrados trabajan a menudo con procesadores de 8 bits. En estos dispositivos, por lo general, el tamaño fundamental de los datos es un byte. La memoria se organiza de acuerdo con los bytes, el tamaño de los registros es de un byte y la CPU está diseñada para procesar datos de 8 bits. Esta es una limitación bastante incómoda porque hay muchas situaciones en las que el valor de una variable excederá el valor máximo de un número de 8 bits.

Finalmente, todas las variables C cuidadosamente definidas y con un nombre ilustrativo terminan como bits en la memoria (o registros)

El lenguaje C no limita el tamaño de una variable a 8 bits, incluso cuando está trabajando con un procesador de 8 bits. Esto significa que una variable en el programa en lenguaje de máquina que ejecuta el microprocesador puede corresponder a múltiples registros o ubicaciones de memoria en el hardware. «Manualmente» administrar variables de múltiples bytes (es decir, a través del lenguaje ensamblador) no parece muy deseable, pero a los compiladores no les importa en absoluto, y hacen el trabajo muy bien.

Definiendo variables

El primer paso para usar una variable es definir esa variable. Los componentes esenciales de una definición de variable son el tipo y el nombre.

Hay muchos tipos de variables; La lista completa, así como los detalles de la implementación del hardware, variarán según el compilador que esté utilizando. Aquí hay unos ejemplos:

char : un valor con signo de un byte
int : un valor con signo de dos o cuatro bytes
long : un valor con signo de cuatro bytes
float : un valor de cuatro bytes que puede tener números después del punto decimal; en otras palabras, no está limitado a enteros
bit : el valor de la variable puede ser cero o uno

Esta es una representación visual de cómo una serie de bits se interpreta de manera diferente en función de si una variable se considera con signo (utilizando la notación de complemento a dos) o sin signo:

El siguiente código muestra definiciones de variables que consisten solo en un tipo básico y un nombre (la forma más técnica de referirse al nombre es «identificador»):

Inicializando variables

En muchos casos, es una buena idea darle un valor inicial a una variable. Esto facilita la depuración y es esencial si la variable se utilizará antes de que le fije un valor conocido. Puede inicializar una variable en la definición, o en otra parte de su código, pero incluir el valor inicial en la definición es una buena manera de mantener el código organizado y desarrollar el hábito de inicializar siempre que sea necesario.

Aquí hay ejemplos de definiciones de variables que incluyen una inicialización:

Definiciones de variables delicadas

Hay varias otras palabras que se pueden incluir en una definición de variable. Estos se utilizan para especificar con mayor precisión la naturaleza de la variable o para dar instrucciones al compilador sobre cómo implementar la variable en el hardware.

Las siguientes palabras clave podrían ser útiles en sus proyectos de programa para microcontroladores:

■ unsigned : como habrá adivinado, esto le dice al compilador que interprete la variable como un valor sin signo en lugar de un valor con signo. Uno defino le mayoría de sus variables como sin signo, porque rara vez se necesitan números negativos.

■ const : el calificador de tipo const indica al compilador que el valor de una variable no debe cambiar. Como dice al principio del artículo, a veces el valor de una «variable» C no es variable. Si usted comete un error en su código e intenta modificar el valor de una variable const, el compilador generará un error.

■ volatile : los compiladores sofisticados no solo toman su código original y lo traducen directamente al lenguaje de máquina. También intentan hacer que el código funcione de manera más eficiente, y este proceso se conoce como «optimización». En general, la optimización es algo bueno. Sin embargo, de vez en cuando, puede arruinar el día, porque el compilador se optimiza solo en función del código y no puede tener en cuenta los eventos de hardware que interactúan con el código. Cuando una variable tiene el calificador de tipo volátil, el compilador sabe que debe tener cuidado con las optimizaciones relacionadas con esa variable.

Una interrupción puede hacer que el valor de una variable se modifique de una manera que el compilador no espera, y esto puede llevar a una optimización problemática

■ tipos de memoria, como xdata , idata y code : estas palabras obligan al compilador a ubicar una variable en una parte específica de la memoria del microprocesador. El tipo que aloja en la memoria de programa es particularmente útil: los recursos de RAM en un microcontrolador a menudo son mucho más limitados que la memoria de programa no volátil, y el tipo de memoria de código le permite utilizar memoria de programa adicional para almacenar datos que se usan en su programa pero nunca se modifican.

Aquí hay unos ejemplos:

Uso de las variables

No hay mucho que decir acerca de cómo usar sus variables después de que se hayan definido. En realidad, con respecto a la variable en sí, la definición es la mayor parte del trabajo. Después de eso, usted simplemente incorpora el identificador de la variable en operaciones matemáticas, bucles, llamadas a funciones, etc. Un buen compilador no solo manejará los detalles de la implementación del hardware, sino que también buscará formas de optimizar el código con respecto a la velocidad de ejecución o el tamaño del programa.

Quizás el error más común relacionado con el uso variable es un desbordamiento. Esto se refiere a una situación en la que el valor asignado a una variable está fuera del rango numérico asociado con el tipo de datos de la variable.

Se debe pensar en todos los escenarios posibles relacionados con una variable determinada y luego elegir el tipo de datos en consecuencia.

Resumen

La funcionalidad de la variable básica proporcionada por el lenguaje C es intuitiva y directa, pero hay algunos detalles que pueden ayudarlo a hacer que una aplicación integrada sea más confiable y eficiente. Si tiene alguna duda relacionada con las variables de C, no dude en preguntar en nuestro grupo en Facebook Robots Didácticos.




Arduino: alojar datos en la memoria de programa con PROGMEM

Almacene los datos en la memoria FLASH (memoria de programa) en lugar de RAM (a veces nombrada como SRAM, del inglés STATIC RAM = RAM estática).

Los distintos tipos de memoria disponibles en una placa Arduino son:

FLASH: Esta memoria almacena el código del programa.

RAM: Esta memoria almacena los datos del programa y es volátil. Cuando se apaga Arduino se pierden los datos.

EEPROM: Esta memoria almacena datos que son persistentes. Esta memoria puede ser utilizada para guardar configuración o cualquier otro dato que podamos utilizar si se apaga y enciende Arduino.

La palabra clave PROGMEM es un modificador de variable. Se debe usar solo con los tipos de datos definidos en la biblioteca pgmspace.h.

PROGMEM le dice al compilador «ponga esta información en la memoria flash», en lugar de en la RAM, donde iría normalmente.

PROGMEM es parte de la biblioteca pgmspace.h. Ésta se incluye automáticamente en las versiones modernas del IDE. Sin embargo, si estuviese utilizando una versión IDE por debajo de 1.0 (2011), primero deberá incluir la biblioteca en la parte superior de su programa, con esta declaración:

Sintaxis

tipoDato – algún tipo de variable
nombreVariable – el nombre de su matriz de datos

Tenga en cuenta que debido a que la indicación PROGMEM es un modificador de variable, no existe una regla estricta sobre dónde debe ir, por lo que el compilador acepta diversas posiciones, que también pueden ser sinónimos. Sin embargo, las pruebas han indicado que, en varias versiones de Arduino, PROGMEM puede funcionar en una ubicación y no en otra.

Los siguientes ejemplos se han probado y funcionan con los IDE actuales. Las versiones anteriores del IDE pueden funcionar mejor si la palabra PROGMEM se incluye después del nombre de la variable.

Tenga en cuenta que dado que PROGMEM se podría usar con una sola variable, pero en realidad solo vale la pena si tiene un bloque de datos más grande para almacenar, que por lo general es más fácil de poner en una matriz (o en otra estructura de datos C++, algo que queda más allá de la presente discusión).

Usar PROGMEM es un procedimiento de dos pasos. Después de tener los datos que están en la memoria Flash, se requieren métodos especiales (funciones), también definidos en la biblioteca pgmspace.h, para volcar los datos de la memoria de programa a la RAM, de modo de que podamos trabajar con ellos.

Código de ejemplo

Las siguientes secciones de código ilustran cómo leer y escribir unsigned char (bytes) e int (2 bytes) en PROGMEM.

Matrices de cadenas de caracteres

A menudo es conveniente configurar una serie de cadenas de caracteres cuando se trabaja con grandes cantidades de texto, como por ejemplo en un proyecto con una pantalla LCD.

Debido a que las cadenas en sí son matrices, en realidad este es un ejemplo de una matriz bidimensional.

Estas tienden a ser grandes estructuras, por lo que por lo general es deseable colocarlas en la memoria del programa.

El siguiente código ilustra la idea.

Notas y advertencias

Tenga en cuenta que las variables deben estar definidas globalmente, o definidas con la palabra clave static, para poder trabajar con PROGMEM.

El siguiente código NO funcionará cuando esté dentro de una función:

El siguiente código funcionará, incluso si está definido localmente dentro de una función:

La macro F()

Cuando se utiliza una instrucción como:

La cadena a imprimir normalmente se guarda en la memoria RAM. Si su programa imprime muchas cosas en el Monitor Serie, puede acabar llenando la RAM. Si tiene espacio libre en la memoria FLASH, puede indicar fácilmente que la cadena debe guardarse en FLASH, usando la sintaxis: