Archivo de la etiqueta: Nanotecnología

Nuevos micro robots de tamaño celular podrían hacer viajes increíbles

Estos robots se construyen en cantidades en un mismo proceso utilizando la tecnología de nanofabricación: cada oblea contiene un millón de máquinas.


Los investigadores han aprovechado las últimas técnicas de nanofabricación para crear robots con forma de minúsculos insectos que funcionan de forma inalámbrica, capaces de caminar y sobrevivir en entornos hostiles, y suficientemente pequeños como para ser inyectados a través de una aguja hipodérmica común.

“Cuando era niño, recuerdo haber mirado en un microscopio y haber visto todas estas locuras. Ahora estamos construyendo cosas que están activas en ese tamaño. No solo podemos mirar este mundo: en realidad, puedes jugar en él”, dijo Marc Miskin, quien desarrolló las técnicas de nanofabricación con sus colegas, los profesores Itai Cohen y Paul McEuen y el investigador Alejandro Cortese en la Universidad de Cornell, mientras que Miskin fue postdoctorado en el laboratorio de física atómica y de estado sólido allí. En enero, se convirtió en profesor asistente de ingeniería eléctrica y de sistemas en la Universidad de Pennsylvania.

Miskin presentó esta semana su investigación sobre robots microscópicos en la reunión de marzo de la American Physical Society en Boston. También participó en una conferencia de prensa que describió el trabajo.

Crédito: Marc Mishkin


Orígenes de los micro robots

En el transcurso de los últimos años, Miskin y sus colegas de investigación desarrollaron una técnica de nanofabricación de varios pasos que convierte una oblea de silicio especializada de 10 centímetros en un millón de robots microscópicos en solo unas semanas. Cada 70 micrones de largo (aproximadamente el ancho de un cabello humano muy delgado), los cuerpos de los robots se forman a partir de un esqueleto de vidrio rectangular superfino cubierto con una capa delgada de silicio en la que los investigadores graban sus componentes electrónicos de control y dos o cuatro células solares de silicio: el equivalente rudimentario de un cerebro y órganos.

“La verdadera explicación a alto nivel de cómo los hacemos es que tomamos la tecnología desarrollada por la industria de los semiconductores y la usamos para hacer pequeños robots”, dijo Miskin.

Cada una de las cuatro patas de un robot está formada por una bicapa de platino y titanio (o alternativamente, grafeno). El platino se aplica utilizando deposición de capa atómica. “Es como pintar con átomos”, dijo Miskin. La capa de platino-titanio se corta luego en las cuatro patas de cada robot de 100 átomos de espesor.

“Las piernas son super fuertes”, dijo. “Cada robot lleva un cuerpo que es 1.000 veces más grueso y pesa aproximadamente 8.000 veces más que cada pata”.

Los investigadores encienden un láser en una de las células solares de un robot para alimentarlo. Esto hace que el platino en la pierna se expanda, mientras que, a su vez, el titanio permanece rígido, lo que hace que la extremidad se doble. La marcha del robot se genera porque cada célula solar provoca la contracción alternativa o la relajación de las patas delanteras o traseras.

Los investigadores vieron por primera vez el movimiento de la pata de un robot varios días antes de la navidad de 2017. “La pata solo se torció un poco”, recordó Miskin. “Pero fue la primera prueba de diseño, ¡esto va a funcionar!”





Los equipos de Cornell y Pennsylvania trabajan ahora en versiones inteligentes de los robots con sensores, relojes y controladores a bordo.

La fuente de energía del láser actual limitaría el control del robot al ancho de una uña en el tejido. Así que Miskin está pensando en nuevas fuentes de energía, como ultrasonido y campos magnéticos, que permitirían a estos robots hacer viajes increíbles en el cuerpo humano para misiones como la administración de fármacos o el mapeo del cerebro.

“Descubrimos que puedes inyectarlos con una jeringa y sobreviven, aún están intactos y son funcionales, lo que está muy bien”, dijo.

Fuente de la historia: Materiales proporcionados por la American Physical Society. “Los nuevos micro robots de tamaño celular podrían hacer viajes increíbles: un millón de robots microscópicos funcionales producidos a partir de una oblea de silicio de 4 pulgadas en un nuevo proceso de nanofabricación”. ScienceDaily, marzo de 2019. www.sciencedaily.com/releases/2019/03/190307161906.htm



Usando electricidad y agua, un nuevo tipo de motor puede poner microrobots en movimiento

Los actuadores microhidráulicos, más delgados que un tercio del ancho del cabello humano, están demostrando ser los motores más potentes y eficientes a microescala.

Mire a su alrededor y probablemente verá algo que funciona con un motor eléctrico. Potentes y eficientes, mantienen gran parte de nuestro mundo en movimiento, desde nuestras computadoras hasta refrigeradores y ventanas automáticas en nuestros autos. Pero estas cualidades se hacen difíciles cuando estos motores se reducen a tamaños más pequeños que un centímetro cúbico.

“A escalas muy pequeñas, se obtiene un calentador en lugar de un motor”, dijo Jakub Kedzierski, personal del Grupo de Tecnologías de Química, Microsistema y Nanoescala del Laboratorio Lincoln del MIT. Hoy en día, no existe ningún motor que sea altamente eficiente y poderoso a la vez que microscópico. Y eso es un problema, porque los motores a esa escala son necesarios para poner en movimiento los sistemas miniaturizados: micro guías que pueden apuntar los láseres con una fracción de un grado a lo largo de miles de kilómetros, drones diminutos que pueden meterse entre escombros para encontrar sobrevivientes, o incluso bots que pueden arrastrarse por el tracto digestivo humano.

Para ayudar a sistemas de energía como estos, Kedzierski y su equipo están creando un nuevo tipo de motor llamado actuador microhidráulico. Los actuadores se mueven con un nivel de precisión, eficiencia y potencia que aún no ha sido posible a microescala. Un artículo que describe este trabajo fue publicado en Science Robotics.

Los actuadores microhidráulicos utilizan una técnica llamada electrohumectación para lograr el movimiento. El electrohumectado aplica una tensión eléctrica a las gotas de agua sobre una superficie sólida para distorsionar la tensión superficial del líquido. Los actuadores aprovechan esta distorsión para forzar a las gotas de agua dentro del actuador a moverse, y con ellas, a todo el actuador.

“Piensa en una gota de agua en una ventana; la fuerza de la gravedad la distorsiona y se mueve hacia abajo”, dijo Kedzierski. “Aquí, usamos voltaje para causar la distorsión, que a su vez produce movimiento”.

El actuador está construido en dos capas. La capa inferior es una lámina de metal con electrodos estampados en ella. Esta capa está cubierta con un dieléctrico, un aislante que se polariza cuando se aplica un campo eléctrico. La capa superior es una lámina de polyimida, un plástico fuerte, que tiene perforados canales poco profundos. Los canales guían la trayectoria de docenas de gotas de agua que se aplican entre las dos capas y se alinean con los electrodos. Para evitar la evaporación, el agua se mezcla antes con una solución de cloruro de litio, que reduce la presión de vapor del agua lo suficiente como para que las gotas del tamaño de un micrómetro duren meses. Las gotas mantienen su forma redondeada (en lugar de ser aplastadas entre las capas) debido a su tensión superficial y su tamaño relativamente pequeño.

El actuador cobra vida cuando se aplica voltaje a los electrodos, aunque no a todos a la vez. Se realiza en un ciclo de activación de dos electrodos por gota a la vez. Sin voltaje, una sola gota de agua descansa neutralmente en dos electrodos, 1 y 2. Pero al aplicar un voltaje a los electrodos 2 y 3, de repente la gota se deforma, estirándose para tocar el electrodo energizado 3 y se retira del electrodo 1.

Esta fuerza horizontal en una gota no es suficiente para mover el actuador. Pero con este ciclo de voltaje aplicado simultáneamente a los electrodos debajo de cada gota en la matriz, la capa de polyimida completa se desliza para apaciguar la atracción de las gotas hacia los electrodos energizados. Al continuar haciendo circular el voltaje, las gotitas siguen caminando sobre los electrodos y la capa continúa deslizándose; si se corta la tensión, y el actuador se detiene en sus pistas. El voltaje, entonces, se convierte en una herramienta poderosa para controlar con precisión el movimiento del actuador.

Pero, ¿cómo queda el actuador frente a otros tipos de motores? Las dos métricas para medir el rendimiento son la densidad de potencia, o la cantidad de potencia que produce el motor en relación con su peso y eficiencia, o la medida de la energía desperdiciada. Uno de los mejores motores eléctricos en términos de eficiencia y densidad de potencia es el motor del sedán Tesla Modelo S. Cuando el equipo probó los actuadores microhidráulicos, descubrieron que estaban justo detrás de la densidad de potencia del Modelo S (a 0,93 kilovatios por kilogramo) y el rendimiento de eficiencia (con una eficiencia del 60 por ciento a la densidad de potencia máxima). Superaron ampliamente los actuadores piezoeléctricos y otros tipos de microactuadores.

“Estamos entusiasmados porque estamos cumpliendo con ese punto de referencia, y aún estamos mejorando a medida que escalamos a tamaños más pequeños”, dijo Kedzierski. Los actuadores mejoran en tamaños más pequeños porque la tensión de la superficie sigue siendo la misma independientemente del tamaño de las gotas de agua, y las gotas más pequeñas dejan espacio para que aun más gotas entren en el actuador y ejerzan su fuerza horizontal. “La densidad de potencia simplemente se dispara. Es como tener una cuerda cuya fuerza no se debilita a medida que se adelgaza”, agregó.

El último actuador, el que está más cerca del modelo S de Tesla, tenía una separación de 48 micrómetros entre las gotas. El equipo ahora está reduciendo eso a 30 micrómetros. Proyectan que, a esa escala, el actuador coincidirá con el Tesla en densidad de potencia y, a 15 micrómetros, lo superará.

La reducción de los actuadores es solo una parte de la ecuación. El otro aspecto en el que el equipo está trabajando activamente es la integración 3D. En este momento, un solo actuador es un sistema de dos capas, más delgado que una bolsa de plástico y flexible como ella, también. Quieren apilar los actuadores en un sistema similar a un andamio que pueda moverse en tres dimensiones.

Kedzierski imagina un sistema semejante que imita la matriz muscular de nuestro cuerpo, la red de tejidos que permite a nuestros músculos lograr un movimiento instantáneo, potente y flexible. Diez veces más potentes que el músculo, los actuadores se inspiraron en los músculos de muchas maneras, desde su flexibilidad y ligereza hasta su composición de componentes sólidos y fluidos.

Y así como el músculo es un excelente actuador en la escala de una hormiga o un elefante, estos actuadores microhidráulicos también podrían tener un impacto poderoso no solo a microescala, sino en la macroescala.

“Uno podría imaginar”, dijo Eric Holihan, quien ha estado ensamblando y probando los actuadores, “la tecnología aplicada a los exoesqueletos”, construida con los actuadores como un músculo real, configurado en juntas flexibles en lugar de engranajes. O un ala de avión podría cambiar de forma con comandos eléctricos, con miles de actuadores deslizándose uno sobre el otro para cambiar la forma aerodinámica del ala.

Mientras sus imaginaciones se agitan, el equipo enfrenta desafíos en el desarrollo de grandes sistemas de actuadores. Un desafío es cómo distribuir la potencia en ese volumen. Un esfuerzo paralelo en el laboratorio, que está desarrollando microbaterías para integrarse con los actuadores, podría ayudar a resolver ese problema. Otro desafío es cómo empaquetar los actuadores para eliminar la evaporación.

“La confiabilidad y el empaque continuarán siendo las preguntas predominantes que se nos plantean sobre esta tecnología hasta que demostremos una solución”, dijo Holihan. “Esto es algo que esperamos atacar frontalmente en los próximos meses”.

Fuente: MIT NEWS