Archivo de la categoría: Electrónica

El robot Slothbot hace monitoreo ambiental basado en su lentitud

Para el monitoreo ambiental, la agricultura de precisión, el mantenimiento de la infraestructura y ciertas aplicaciones de seguridad, una eficiencia lenta y de bajo consumo de energía puede ser mejor que algo rápido, que necesita una recarga continua. Ahí es donde tiene su lugar «SlothBot».

Impulsado por un par de paneles fotovoltaicos y diseñado para permanecer en el dosel del bosque funcionando durante meses, SlothBot (“Robot Perezoso”) se mueve solo cuando es necesario para medir cambios ambientales, como el clima y los factores químicos en el ambiente, que solo se pueden observar con una presencia a largo plazo. El prototipo de prueba del hipereficiente robot, descrito el 21 de mayo en la Conferencia Internacional sobre Robótica y Automatización (ICRA) en Montreal, pronto se encontrará entre los cables de los árboles en el Jardín Botánico de Atlanta.

«En robótica, parece que siempre estamos presionando por robots más rápidos, más ágiles y más extremos», dijo Magnus Egerstedt, Director de la Escuela de Ingeniería Eléctrica e Informática Steve W. Chaddick en el Instituto de Tecnología de Georgia e investigador principal de Slothbot. “Pero hay muchas aplicaciones donde no hay necesidad de ser rápido. Solo tiene que estar allí, persistiendo durante largos períodos de tiempo, observando lo que está ocurriendo».

Basado en lo que Egerstedt llamó la «teoría de la lentitud», el asistente de investigación graduado Gennaro Notomista diseñó SlothBot junto con su compañero, Yousef Emam, utilizando piezas impresas en 3D para los mecanismos de engranaje y de paso de cable a cable que son necesarios para rastrear a través de una red de cables en los árboles El mayor desafío para un robot de rastreo de cables es cambiar de un cable a otro sin caerse, dijo Notomista.

«El desafío es sujetar suavemente un cable mientras se agarra a otro», dijo. «Es una maniobra difícil y tienes que hacerlo bien para proporcionar una transición a prueba de fallos. Asegurarse de que los traspasos funcionen bien durante largos períodos de tiempo es realmente el mayor desafío».

Mecánicamente, SlothBot consiste en dos cuerpos conectados por una bisagra controlada. Cada cuerpo aloja un motor de accionamiento conectado a una llanta en la que se monta un neumático. El uso de ruedas para la locomoción es simple, eficiente en energía y más seguro que otros tipos de locomoción por cable, según los investigadores.

SlothBot ha operado hasta ahora en una red de cables en el campus de Georgia Tech. A continuación, una nueva carcasa impresa en 3D, que hace que el robot se vea más como un perezoso, protegerá los motores, engranajes, actuadores, cámaras, computadoras y otros componentes de la lluvia y el viento. Eso establecerá las bases para estudios a más largo plazo en el dosel de los árboles en el Jardín Botánico de Atlanta, donde Egerstedt espera que los visitantes vean pronto las condiciones de monitoreo de SlothBot, en el próximo otoño boreal.

El nombre de SlothBot no es una coincidencia. Los perezosos de la vida real son pequeños mamíferos que viven en los doseles de la selva de América del Sur y Central. Se mantienen comiendo hojas de árboles, y estos animales pueden sobrevivir con el equivalente calórico diario de una papa pequeña. Con su metabolismo lento, los perezosos descansan tanto como 22 horas al día y rara vez descienden de los árboles, donde pueden pasar toda su vida.

«La vida de un perezoso es bastante lenta y no hay mucha emoción a nivel diario», dijo Jonathan Pauli, profesor asociado en el Departamento de Ecología de Bosques y Vida Silvestre de la Universidad de Wisconsin-Madison, quien ha consultado con el equipo de Georgia Tech sobre el proyecto. «Lo bueno de una vida llevada con lentitud es que realmente no se necesita mucha energía. Puede tener una larga duración y persistencia en un área limitada, con muy pocas entradas de energía durante un largo tiempo».

Eso es exactamente lo que los investigadores esperan de SlothBot, cuyo desarrollo ha sido financiado por la Oficina de Investigación Naval de los Estados Unidos.

«Hay mucho que no sabemos sobre lo que realmente sucede en áreas densas cubiertas de árboles», dijo Egerstedt. «La mayoría de las veces, SlothBot solo se quedará colgado, y de vez en cuando se moverá a un lugar soleado para recargar la batería».

Los investigadores también esperan probar SlothBot en una plantación de cacao en Costa Rica, que ya es hogar de perezosos reales. «Los cables utilizados para mover el cacao se han convertido en una autopista de perezosos porque a los animales les resulta útil moverse», dijo Egerstedt. «Si todo va bien, desplegaremos SlothBots a lo largo de los cables para monitorear a los perezosos».




Egerstedt es conocido por los algoritmos que manejan enjambres de pequeños robots con ruedas o voladores. Pero durante una visita a Costa Rica, se interesó por los perezosos y comenzó a desarrollar lo que él llama «una teoría de la lentitud» junto con el profesor Ron Arkin en la Escuela de Computación Interactiva de Georgia Tech. La teoría aprovecha los beneficios de la eficiencia energética.

«Si estás haciendo cosas como el monitoreo ambiental, quieres estar en el bosque durante meses», dijo Egerstedt. «Eso cambia tu forma de pensar acerca de los sistemas de control a un alto nivel».

Ya se usan robots voladores para monitoreo ambiental, pero sus necesidades de alta energía implican que no pueden quedarse por mucho tiempo. Los robots con ruedas pueden arreglárselas con menos energía, pero pueden quedar atrapados en el lodo o ser obstaculizados por las raíces de los árboles, y no puede obtener una vista de gran detalle desde el suelo.

«Lo que cuesta energía más que cualquier otra cosa es el movimiento», dijo Egerstedt. “Moverse es mucho más costoso que sentir o pensar. Para los robots ambientales, solo debes moverte cuando es absolutamente necesario. Teníamos que pensar en cómo sería eso».

Para Pauli, que estudia una variedad de vida silvestre, ha sido gratificante trabajar con Egerstedt para ayudar a SlothBot a cobrar vida.

«Es genial ver a un robot inspirado en la biología de los perezosos», dijo. “Ha sido divertido compartir cómo viven los perezosos y otros organismos que viven en estos ecosistemas durante largos períodos de tiempo. Será interesante ver a los robots reflejando lo que vemos en las comunidades ecológicas naturales”.

Esta investigación fue patrocinada por la Oficina de Investigación Naval de los EE. UU. A través de la concesión N00014-15-2115.



Ver a través de los ojos de un robot ayuda a personas con grandes deficiencias motoras

Un interfaz que utiliza la tecnología de realidad aumentada podría ayudar a las personas con profundas deficiencias motoras a operar un robot humanoide para alimentarse sin ayuda y a realizar la rutina de las tareas de cuidado personal, tales como rascarse una picazón y aplicarse loción para la piel. La interfaz basada en la web muestra la visión de un robot de los alrededores para ayudar a los usuarios a interactuar con el mundo a través de la máquina.

El sistema, descrito en la revista PLOS ONE, podría ayudar a hacer que los robots sofisticados sean más útiles para las personas que no tienen experiencia en la operación de sistemas robóticos complejos. Los participantes del estudio interactuaron con la interfaz del robot utilizando tecnologías estándar de acceso asistido por computadora, tales como rastreadores oculares y rastreadores de movimiento de la cabeza, que ellos ya estaban usando para controlar sus computadoras personales.

El documento informa sobre dos estudios que muestran cómo tales «sustitutos corporales robóticos», que pueden realizar tareas similares a las de los humanos, podrían mejorar la calidad de vida de los usuarios. El trabajo podría proporcionar una base para desarrollar robots de asistencia más rápidos y capaces.

«Nuestros resultados sugieren que las personas con deficiencias motoras profundas pueden mejorar su calidad de vida utilizando sustitutos corporales robóticos», dijo Phillip Grice, un reciente graduado Ph.D del Instituto de Tecnología de Georgia, quien es primer autor del artículo. «Hemos dado el primer paso para hacer posible que alguien compre un tipo apropiado de robot, lo tenga en su hogar y obtenga un beneficio real de él».

Grice y el profesor Charlie Kemp del Departamento de Ingeniería Biomédica de Wallace H. Coulter en Georgia Tech y Emory University utilizaron un manipulador móvil PR2 fabricado por Willow Garage para los dos estudios. El robot con ruedas tiene 20 grados de libertad, con dos brazos y una «cabeza», que le da la capacidad de manipular objetos como botellas de agua, paños, cepillos para el cabello e incluso una afeitadora eléctrica.

(A) El robot PR2. (B) Uno de los siete brazos DoF del robot, incluida la piel de tela táctil (gris) y el relleno de espuma (negro) en la pinza metálica. (C) La base del robot, incluida la piel de tela sensible al tacto (azul), colocada sobre el relleno de espuma.

«Nuestro objetivo es dar a las personas con uso limitado de sus propios cuerpos acceso a cuerpos robóticos para que puedan interactuar con el mundo de nuevas maneras», dijo Kemp.

En su primer estudio, Grice y Kemp pusieron el PR2 conectado a través de Internet para un grupo de 15 participantes con discapacidades motoras graves. Los participantes aprendieron a controlar el robot en forma remota, utilizando su propio equipo de asistencia que utilizaban para operar el cursor del mouse para realizar una tarea de cuidado personal. El ochenta por ciento de los participantes pudieron manipular el robot para recoger una botella de agua y llevarla a la boca de un maniquí.

«En comparación con las personas sanas, las capacidades del robot son limitadas», dijo Grice. «Pero los participantes pudieron realizar tareas de manera efectiva y mostraron una mejora en una evaluación clínica que midió su capacidad para manipular objetos en comparación con lo que hubieran podido hacer sin el robot».

En el segundo estudio, los investigadores proporcionaron el PR2 y el sistema de interfaz a Henry Evans, un hombre de California que ha estado ayudando a los investigadores de Georgia Tech a estudiar y mejorar los sistemas de asistencia robótica desde 2011. Evans, que tiene un control muy limitado de su cuerpo, probó el robot en su casa durante siete días y no solo completó las tareas, sino que también ideó nuevos usos combinando la operación de ambos brazos de robot al mismo tiempo, usando un brazo para controlar una toalla y el otro para usar un cepillo.

«El sistema fue muy liberador para mí, ya que me permitió manipular mi entorno de forma independiente por primera vez desde mi ataque», dijo Evans. «Con respecto a otras personas, me emocionó ver a Phil obtener resultados abrumadoramente positivos cuando probó objetivamente el sistema con otras 15 personas».

Los investigadores se alegraron de que Evans desarrollara nuevos usos para el robot, combinando el movimiento de los dos brazos en formas que no habían esperado.

«Cuando le dimos a Henry acceso gratuito al robot durante una semana, encontró nuevas oportunidades para usarlo que no habíamos anticipado», dijo Grice. «Esto es importante porque gran parte de la tecnología de asistencia disponible en la actualidad está diseñada para propósitos muy específicos. Lo que Henry ha demostrado es que este sistema es poderoso para brindar asistencia y capacitar a los usuarios. Las oportunidades para esto son potencialmente muy amplias».

La interfaz le permitió a Evans cuidarse en la cama durante un período prolongado de tiempo. «El aspecto más útil del sistema de interfaz fue que podía operar el robot de forma totalmente independiente, con solo movimientos pequeños de la cabeza utilizando una interfaz gráfica de usuario extremadamente intuitiva», dijo Evans.

La interfaz basada en la web muestra a los usuarios cómo se ve el mundo desde las cámaras ubicadas en la cabeza del robot. Los controles sobre los que se puede hacer clic superpuestos en la vista permiten a los usuarios mover el robot en un hogar u otro entorno y controlar las manos y los brazos del robot. Cuando los usuarios mueven la cabeza del robot, por ejemplo, la pantalla muestra el cursor del mouse como un par de globos oculares para mostrar a dónde mirará el robot cuando el usuario haga clic. Al hacer clic en un disco que rodea las manos robóticas, los usuarios pueden seleccionar un movimiento. Mientras se conduce al robot alrededor de una habitación, las líneas que siguen al cursor en la interfaz indican la dirección en que viajará.

La construcción de la interfaz en torno a las acciones de un simple mouse de un solo botón permite a las personas con una variedad de discapacidades usar la interfaz sin largas sesiones de entrenamiento.

«Tener una interfaz que puedan operar los individuos con una amplia gama de discapacidades físicas significa que podemos proporcionar acceso a una amplia gama de personas, una forma de diseño universal», señaló Grice. «Debido a su capacidad, este es un sistema muy complejo, por lo que el desafío que tuvimos que superar fue hacerlo accesible a las personas que tienen un control muy limitado de sus propios cuerpos».




Si bien los resultados del estudio demostraron lo que los investigadores se habían propuesto hacer, Kemp está de acuerdo en que se pueden hacer mejoras. El sistema existente es lento y los errores cometidos por los usuarios pueden crear contratiempos significativos. Aún así, dijo, «la gente podría usar esta tecnología hoy y realmente beneficiarse de ella».

Evans sugirió que el costo y el tamaño del PR2 deberían reducirse significativamente para que el sistema sea comercialmente viable. Kemp dice que estos estudios señalan el camino hacia un nuevo tipo de tecnología de asistencia.

«Me parece plausible, basado en este estudio, que los sustitutos robóticos del cuerpo podrán proporcionar beneficios significativos a los usuarios», agregó Kemp.

Artículos relacionados:

Una prótesis que restaura la sensación de dónde está tu mano
Logran que los robots rastreen objetos en movimiento con una precisión sin precedentes
Dando sentido del tacto a los robots

Historia De Fuente:

Material proporcionado por el Instituto de Tecnología de Georgia.

Publicación de referencia:

Phillip M. Grice, Charles C. Kemp. In-home and remote use of robotic body surrogates by people with profound motor deficits. PLOS ONE, 2019; 14 (3): e0212904 DOI: 10.1371/journal.pone.0212904

Georgia Institute of Technology. «Seeing through a robot’s eyes helps those with profound motor impairments.» ScienceDaily. ScienceDaily March 2019.



Crean piel electrónica resistente al agua, sensible y con capacidad de auto-reparación

Un equipo de científicos de la Universidad Nacional de Singapur (NUS) se inspiró en los invertebrados submarinos como las medusas para crear una piel electrónica con una funcionalidad similar.

Al igual que una medusa, la piel electrónica es transparente, estirable, sensible al tacto y se auto-repara en entornos acuáticos. Pero además es conductora de la electricidad, y podría usarse en todo, desde pantallas táctiles resistentes al agua hasta robots acuáticos blandos.

El profesor asistente Benjamin Tee y su equipo del Departamento de Ciencia e Ingeniería de Materiales de la Facultad de Ingeniería de la Universidad Nacional de Singapur desarrollaron el material, junto con colaboradores de la Universidad de Tsinghua y la Universidad de California en Riverside.

El equipo de ocho investigadores dedicó poco más de un año a desarrollar el material, y su invención se publicó por primera vez este año en la revista Nature Electronics.

Materiales auto-reparables, transparentes e impermeables para un amplio rango de usos

El profesor asistente Tee ha estado trabajando en pieles electrónicas durante muchos años, y fue parte del equipo que desarrolló los primeros sensores electrónicos de piel con auto-reparación en 2012.

Su experiencia en esta área de investigación lo llevó a identificar los obstáculos clave que aún no han superado las pieles electrónicas auto-reparables. «Uno de los desafíos con la mayoría de los materiales auto-reparables actuales es que no son transparentes y no funcionan de manera eficiente cuando están mojados», dijo. «Estos inconvenientes los hacen menos útiles para aplicaciones electrónicas, como las pantallas táctiles, que a menudo deben usarse en condiciones de clima con humedad extrema».

Continuó: «Con esta idea en mente, comenzamos a observar a las medusas; son transparentes y capaces de percibir en el ambiente acuático. Entonces, nos preguntamos cómo podríamos hacer un material artificial que pudiera imitar la naturaleza resistente al agua de las medusas y, sin embargo, fuese sensible al tacto».

Tuvieron éxito en este esfuerzo al crear un gel que consiste en un polímero a base de fluorocarbono con un líquido ionizado rico en flúor. Cuando se los combina, la red de polímeros interactúa con el líquido iónico a través de interacciones ión-dipolo altamente reversibles, lo que le permite auto-repararse.

Al elaborar las ventajas de esta configuración, el profesor Tee explicó: «La mayoría de los geles de polímeros conductores, como los hidrogeles, se hinchan al sumergirlos en agua o se secan con el tiempo en el aire, lo que hace que nuestro material sea diferente es que puede conservar su forma tanto en entornos húmedos como secos. Funciona bien en agua de mar e incluso en ambientes ácidos o alcalinos».


La próxima generación de robots blandos

La piel electrónica se crea imprimiendo el material nuevo dentro de circuitos electrónicos. Como es un material blando y estirable, sus propiedades eléctricas cambian cuando se toca, presiona o se tensa.

«Luego podemos medir este cambio y convertirlo en señales eléctricas legibles para crear una amplia gama de diferentes aplicaciones de sensores», agregó el profesor Tee.

«La capacidad de imprimir nuestro material en 3D también muestra potencial en la creación de tableros de circuitos totalmente transparentes que podrían usarse en aplicaciones robóticas. Esperamos que este material pueda usarse para desarrollar varias aplicaciones en tipos emergentes de robots blandos», agregó el profesor Tee, quien también pertenece al Departamento de Ingeniería Eléctrica e Informática de NUS, y el Instituto Biomédico para la Investigación y Tecnología de Salud Global (BIGHEART) en NUS.





Los robots blandos, y la electrónica blanda en general, buscan imitar los tejidos biológicos para hacerlos más compatibles mecánicamente con las interacciones hombre-máquina. Además de las aplicaciones de robots blandos convencionales, la tecnología impermeable de este nuevo material permite el diseño de robots anfibios y dispositivos electrónicos resistentes al agua.

Una ventaja adicional de esta piel electrónica autorreparable es el potencial que tiene para reducir la basura tecnológica. Tee explicó: «Cada año, se generan globalmente millones de toneladas de desechos electrónicos provenientes de teléfonos móviles, tabletas, etc. Esperamos crear un futuro en el que los dispositivos electrónicos hechos de materiales inteligentes puedan realizar acciones de reparación automática para reducir la cantidad de desechos electrónicos en el mundo».

Próximos pasos

El profesor Tee y su equipo continuarán su investigación y esperan explorar más posibilidades de este material en el futuro. Dijo: «Actualmente, estamos haciendo uso de las propiedades integrales del material para hacer nuevos dispositivos optoelectrónicos, que podrían utilizarse en muchas nuevas interfaces de comunicación hombre-máquina».

Fuente de la historia: ScienceDaily. Materiales proporcionados por la Universidad Nacional de Singapur. Referencia de la publicación: Yue Cao, Yu Jun Tan, Si Li, Wang Wei Lee, Hongchen Guo, Yongqing Cai, Chao Wang, Benjamin C.-K. Tee. Pieles electrónicas autocurables para ambientes acuáticos. Nature Electronics, 2019; 2 (2): 75 DOI: 10.1038 / s41928-019-0206-5

Artículos relacionados:
Dando sentido del tacto a los robots
Nuevos micro robots de tamaño celular podrían hacer viajes increíbles
Una prótesis que restaura la sensación de dónde está tu mano
Módulo de teclado sensible al tacto TTP229
Un pequeño robot blando con muchas patas administraría fármacos al cuerpo humano
Usando electricidad y agua, un nuevo tipo de motor puede poner microrobots en movimiento
FlexShapeGripper: el agarre de la lengua de un camaleón



Chips de potencia ultra baja ayudan a hacer robots pequeños más capaces

Se muestra un automóvil robótico controlado por un chip híbrido de potencia ultra baja en una pista creada para demostrar su capacidad para aprender y colaborar con otro robot. Crédito: Allison Carter, Georgia Tech

Un chip híbrido de potencia ultra baja inspirado en el cerebro podría ayudar a que robots de tamaño pequeño puedan colaborar y aprender de sus experiencias. Combinado con las nuevas generaciones de motores y sensores de baja potencia, el nuevo Circuito Integrado de Aplicación Específica (ASIC = Application-Specific Integrated Circuit), que funciona con milivatios de potencia, podría ser de ayuda para que los enjambres de robots inteligentes operen durante horas en lugar de minutos.

Para ahorrar energía, los chips utilizan un procesador híbrido digital/analógico basado en dominio de tiempo (time domain), en el que la información se codifica en el ancho de pulso de las señales. El circuito integrado de red neuronal se adapta tanto a la programación basada en modelos como al aprendizaje reforzado por colaboración, lo que podría proporcionar a estos pequeños robots mayores capacidades de reconocimiento, búsqueda y rescate, y otras misiones.

Investigadores del Instituto de Tecnología de Georgia demostraron autos robóticos conducidos por ASIC únicos en la Conferencia Internacional de Circuitos de Estado Sólido (ISSCC) IEEE 2019. La investigación fue patrocinada por la Agencia de Proyectos de Investigación Avanzada de Defensa (DARPA) y la Corporación de Investigación de Semiconductores (SRC) a través del Centro para la Habilitación de Inteligencia Autónoma Inspirada en el Cerebro (CBRIC).

«Estamos tratando de poner inteligencia en estos robots tan pequeños para que puedan aprender sobre su entorno y moverse de forma autónoma, sin infraestructura», dijo Arijit Raychowdhury, profesor asociado de la Escuela de Ingeniería Eléctrica e Informática de Georgia Tech. «Para lograrlo, queremos incorporar diseños de circuitos de baja potencia a estos dispositivos tan pequeños para que puedan tomar decisiones por su cuenta. Existe una gran demanda de robots muy pequeños pero capaces, que no requieren infraestructura».

Los autos demostrados por Raychowdhury junto a los estudiantes de posgrado Ningyuan Cao, Muya Chang y Anupam Golder navegan a través de una pista rodeada de almohadillas de goma y paredes de bloques de cartón. Mientras buscan un objetivo, los robots deben esquivar conos de tráfico y evitarse entre ellos, aprendiendo del entorno a medida que avanzan y se comunican continuamente.

Los autos utilizan sensores de inercia y ultrasonido para determinar su ubicación y detectar objetos a su alrededor. La información de los sensores va al ASIC híbrido, que sirve como el «cerebro» de los vehículos. Luego, las instrucciones van a un controlador Raspberry Pi, que es el que envía instrucciones a los motores eléctricos.


En los pequeños robot, tres sistemas principales consumen energía: los motores y controladores utilizados para conducir y dirigir las ruedas, el procesador y el sistema de detección. En los autos construidos por el equipo de Raychowdhury, que el ASIC sea de baja potencia significa que los motores consumen la mayor parte de ésta. «Hemos podido reducir la potencia de cómputo a un nivel en el que el cálculo está dominado por las necesidades de los motores», dijo.

El equipo está trabajando con colaboradores en motores que utilizan tecnología microelectromecánica (MEMS) capaz de operar con mucha menos potencia que los motores convencionales.

«Quisiéramos construir un sistema en el que la potencia de detección, las comunicaciones y la potencia de la computadora y la actuación estén aproximadamente al mismo nivel, del orden de cientos de milivatios», dijo Raychowdhury, quien es profesor adjunto de Semiconductores ON en la Escuela de Ingeniería Eléctrica y Computación. «Si podemos construir estos robots del tamaño de la palma de la mano con motores y controladores eficientes, deberíamos poder obtener tiempos de operación de varias horas con un par de baterías AA. Ahora tenemos una buena idea de qué tipo de plataformas informáticas necesitamos para ofrecer esto, pero todavía necesitamos los otros componentes para ponernos al día».

ASIC


En la computación basada en time-domain, la información se transporta en dos voltajes diferentes, codificados en el ancho de los pulsos. Eso le da a los circuitos las ventajas de eficiencia energética de los circuitos analógicos con la robustez de los dispositivos digitales.

«El tamaño del chip se reduce a la mitad, y el consumo de energía es un tercio de lo que necesitaría un chip digital tradicional», dijo Raychowdhury. «Usamos varias técnicas en los diseños de lógica y memoria para reducir el consumo de energía al rango de milivatios (un milivatio es una milésima de vatio), y al mismo tiempo cumplir con el objetivo de rendimiento».

Con cada ancho de pulso representando un valor diferente, el sistema es más lento que los dispositivos digitales o analógicos, pero Raychowdhury dice que la velocidad es suficiente para estos robots pequeños.

«Para estos sistemas de control, no necesitamos circuitos que operen a múltiples gigahercios porque los dispositivos no se mueven tan rápido», dijo. «Estamos sacrificando un poco de rendimiento para obtener eficiencias energéticas extremas. Incluso si la computadora funciona a 10 o 100 megahercios, eso será suficiente para las aplicaciones que se buscan».





Los chips CMOS de 65 nanómetros se adaptan a los dos tipos de aprendizaje apropiados para un robot. El sistema puede programarse para seguir algoritmos basados en modelos, y puede aprender de su entorno utilizando un sistema de fortalecimiento que fomenta un mejor y mejor desempeño a lo largo del tiempo, como un niño que aprende a caminar tropezando con cosas.

«Se inicia el sistema con un conjunto predeterminado de “pesos” en la red neuronal para que el robot pueda comenzar desde un buen lugar y no se bloquee de inmediato ni proporcione información errónea», dijo Raychowdhury. «Cuando usted lo ubica en un nuevo sitio, el entorno tendrá algunas estructuras que reconocerá y otras que el sistema tendrá que aprender. Luego, el sistema tomará las decisiones por su cuenta y evaluará la efectividad de cada decisión para optimizar sus movimientos».

La comunicación entre los robots les permite colaborar para buscar un objetivo.

«En un entorno de colaboración, el robot no solo necesita entender lo que está haciendo, sino también lo que están haciendo los demás en el mismo grupo», dijo. «Trabajarán para maximizar logros totales del grupo en lugar de una recompensa individual».

Con su demostración en la Conferencia Internacional de Circuitos de Estado Sólido, que les aportó una prueba del diseño, el equipo continúa optimizando el desarrollo y está trabajando en un sistema en chip para integrar los circuitos de computación y control.

«Queremos habilitar más y más funcionalidad en estos pequeños robots», agregó Raychowdhury. «Hemos demostrado lo que es posible, y lo que hemos hecho ahora tendrá que ser aumentado por otras innovaciones».

Fuente: Instituto de Tecnología de Georgia

Artículos Relacionados:
Walbi, el bípedo que aprende a caminar
Usando electricidad y agua, un nuevo tipo de motor puede poner microrobots en movimiento
Un robot que procura moverse tan bien como una hormiga
LSM6DSOX: acelerómetro y giroscopio con aprendizaje automático incorporado
Logran que los robots rastreen objetos en movimiento con una precisión sin precedentes
Nuevos micro robots de tamaño celular podrían hacer viajes increíbles



Nuevos micro robots de tamaño celular podrían hacer viajes increíbles

Estos robots se construyen en cantidades en un mismo proceso utilizando la tecnología de nanofabricación: cada oblea contiene un millón de máquinas.


Los investigadores han aprovechado las últimas técnicas de nanofabricación para crear robots con forma de minúsculos insectos que funcionan de forma inalámbrica, capaces de caminar y sobrevivir en entornos hostiles, y suficientemente pequeños como para ser inyectados a través de una aguja hipodérmica común.

«Cuando era niño, recuerdo haber mirado en un microscopio y haber visto todas estas locuras. Ahora estamos construyendo cosas que están activas en ese tamaño. No solo podemos mirar este mundo: en realidad, puedes jugar en él», dijo Marc Miskin, quien desarrolló las técnicas de nanofabricación con sus colegas, los profesores Itai Cohen y Paul McEuen y el investigador Alejandro Cortese en la Universidad de Cornell, mientras que Miskin fue postdoctorado en el laboratorio de física atómica y de estado sólido allí. En enero, se convirtió en profesor asistente de ingeniería eléctrica y de sistemas en la Universidad de Pennsylvania.

Miskin presentó esta semana su investigación sobre robots microscópicos en la reunión de marzo de la American Physical Society en Boston. También participó en una conferencia de prensa que describió el trabajo.

Crédito: Marc Mishkin


Orígenes de los micro robots

En el transcurso de los últimos años, Miskin y sus colegas de investigación desarrollaron una técnica de nanofabricación de varios pasos que convierte una oblea de silicio especializada de 10 centímetros en un millón de robots microscópicos en solo unas semanas. Cada 70 micrones de largo (aproximadamente el ancho de un cabello humano muy delgado), los cuerpos de los robots se forman a partir de un esqueleto de vidrio rectangular superfino cubierto con una capa delgada de silicio en la que los investigadores graban sus componentes electrónicos de control y dos o cuatro células solares de silicio: el equivalente rudimentario de un cerebro y órganos.

«La verdadera explicación a alto nivel de cómo los hacemos es que tomamos la tecnología desarrollada por la industria de los semiconductores y la usamos para hacer pequeños robots», dijo Miskin.

Cada una de las cuatro patas de un robot está formada por una bicapa de platino y titanio (o alternativamente, grafeno). El platino se aplica utilizando deposición de capa atómica. «Es como pintar con átomos», dijo Miskin. La capa de platino-titanio se corta luego en las cuatro patas de cada robot de 100 átomos de espesor.

«Las piernas son super fuertes», dijo. «Cada robot lleva un cuerpo que es 1.000 veces más grueso y pesa aproximadamente 8.000 veces más que cada pata».

Los investigadores encienden un láser en una de las células solares de un robot para alimentarlo. Esto hace que el platino en la pierna se expanda, mientras que, a su vez, el titanio permanece rígido, lo que hace que la extremidad se doble. La marcha del robot se genera porque cada célula solar provoca la contracción alternativa o la relajación de las patas delanteras o traseras.

Los investigadores vieron por primera vez el movimiento de la pata de un robot varios días antes de la navidad de 2017. «La pata solo se torció un poco», recordó Miskin. «Pero fue la primera prueba de diseño, ¡esto va a funcionar!»





Los equipos de Cornell y Pennsylvania trabajan ahora en versiones inteligentes de los robots con sensores, relojes y controladores a bordo.

La fuente de energía del láser actual limitaría el control del robot al ancho de una uña en el tejido. Así que Miskin está pensando en nuevas fuentes de energía, como ultrasonido y campos magnéticos, que permitirían a estos robots hacer viajes increíbles en el cuerpo humano para misiones como la administración de fármacos o el mapeo del cerebro.

«Descubrimos que puedes inyectarlos con una jeringa y sobreviven, aún están intactos y son funcionales, lo que está muy bien», dijo.

Fuente de la historia: Materiales proporcionados por la American Physical Society. «Los nuevos micro robots de tamaño celular podrían hacer viajes increíbles: un millón de robots microscópicos funcionales producidos a partir de una oblea de silicio de 4 pulgadas en un nuevo proceso de nanofabricación». ScienceDaily, marzo de 2019. www.sciencedaily.com/releases/2019/03/190307161906.htm