Archivo de la categoría: Hardware

Crean robots de partículas basados en el concepto de la «Plaga Gris»

Crean un nuevo tipo de robot compuesto de muchas partículas simples sin ningún control centralizado o punto único de fallo


Los robots partícula están compuestos de componentes débilmente acoplados, o partículas, que carecen de una identidad individual o posición direccionable. Sólo son capaces de un simple movimiento: expansión y contracción. Sin embargo, cuando un grupo de partículas es coordinado para moverse como un colectivo, se observa un interesante comportamiento. Incluso en configuraciones amorfas, los robots de partículas explotan los fenómenos mecánicos estadísticos para producir la locomoción.
Crédito: Shuguang Li/Ingeniería De Columbia

Los robots actuales son, generalmente, entidades auto-contenidas hechas en base a la interdependencia de sus subcomponentes, cada uno con una función específica. Si una parte falla, el robot deja de funcionar. En la robótica de enjambres, cada robot es una máquina que funciona de manera independiente.

En un nuevo estudio publicado la semana pasada en Nature, los investigadores en Ingeniería de Columbia y el MIT de Ciencias de la computación y el Laboratorio de Inteligencia Artificial (CSAIL) demuestran por primera vez la manera de hacer un robot compuesto de muchos componentes débilmente acoplados, o «partículas». A diferencia de los enjambres o los robots modulares, cada componente es simple, y no tiene una identificación o identidad individual. En su sistema, lo que los investigadores llaman «el robot de partículas», cada partícula sólo puede realizar oscilaciones volumétricas uniformes (leves expansiones y contracciones), pero no se puede mover en forma independiente.

 

El equipo, liderado por Hod Lipson, profesor de ingeniería mecánica en Ingeniería de Columbia, y la directora del CSAIL, Daniela Rus, descubrió que al agrupar miles de estas partículas juntas en un conjunto “viscoso” y hacerlo oscilar en reacción a una fuente de luz, cada robot partícula lentamente comenzó a moverse hacia adelante, hacia la luz.

«Usted puede pensar en nuestro nuevo robot como la proverbial «Gray Goo«, dice Lipson. «Nuestro robot no tiene ningún punto único de fallo y no hay un control centralizado. Todavía es bastante primitivo, pero ahora sabemos que este paradigma fundamental de la robótica es realmente posible. Pensamos que incluso puede explicar cómo se pueden mover juntas las células en grupos, aunque las células individuales no pueden hacerlo.»

Los investigadores han estado construyendo robots autónomos durante más de un siglo, pero estos han sido máquinas no biológicas que no pueden crecer, sanar, o recuperarse de los daños. El equipo de Ingeniería de Columbia/MIT se ha centrado en el desarrollo de robots duraderos y escalables que pueden funcionar incluso cuando fallan componentes individuales.

El concepto de «gray goo» (plaga gris), un robot compuesto de miles de millones de nanopartículas, ha fascinado a los fans de la ciencia ficción durante décadas. Pero la mayoría de los investigadores la han descartado como una teoría descabellada.

«Hemos estado tratando de repensar de manera fundamental nuestro enfoque de la robótica, para descubrir si hay una manera de crear robots de manera diferente», dice Lipson, quien dirige el Laboratorio de Máquinas Creativas. «No sólo hacer que un robot tenga aspecto de criatura biológica sino, en realidad, construirlo como un sistema biológico, creando algo de gran complejidad y habilidades, y sin embargo compuesto de simples partes fundamentales.»

Rus, que es también Profesor de Ingeniería Eléctrica y Ciencias de la computación en el MIT, añade, «Todas las criaturas en la naturaleza son [constituidos por] células que se combinan de diferentes maneras para formar los organismos. En el desarrollo de los robots de partículas, la pregunta que nos hacemos es, ¿podemos tener células robóticas que se pueden componer de diferentes maneras para formar diferentes robots? El robot podría tener la mejor forma requerida por la tarea que debe realizar: una serpiente para arrastrarse a través de un túnel, o una máquina con tres manipuladores para la planta de una fábrica. Incluso podríamos dar a estos robots de partículas la capacidad de darse forma ellos mismos”. Supongamos, por ejemplo, que un robot necesita un destornillador de su mesa de trabajo, y su controlador de tornillos está demasiado lejos para alcanzarlo. ¿Qué pasa si el robot pudiese intercambiar sus células para desarrollar un brazo? Cuando cambian sus metas, su cuerpo puede cambiar también.

El equipo, trabajando con Chuck Hoberman en Harvard Wyss Institute y otros investigadores de la Cornell, utiliza muchos componentes idénticos, o partículas, que pueden realizar un simple movimiento como expandirse y contraerse. En las simulaciones, hicieron demostraciones con robots compuestos de 100.000 partículas. Experimentalmente, han demostrado un sistema compuesto de dos docenas de partículas.




«Las partículas más cerca de la fuente de luz experimentan una luz más brillante y por lo tanto inician primero su ciclo «, explica Shuguang Li, primer co-autor del artículo que llevó a cabo los experimentos físicos. Li, que fue becario postdoctoral en Lipson, su laboratorio original de Cornell, y está en la actualidad en una estancia posdoctoral con Rus en CSAIL, continúa. «Ese movimiento crea una especie de ola en todo el conjunto, desde los que están más cerca de la luz a los más alejados, y la ola hace que todo el conjunto avance hacia la luz. El movimiento hacia la luz produce un movimiento global, aunque las partículas individuales no se pueden mover de forma independiente».

Modelando este comportamiento en las simulaciones, se ha probado hacer que eviten obstáculos y transportar objetos a mayores escalas, con cientos y miles de partículas. También fueron capaces de demostrar la capacidad de adaptación del paradigma de robot de partículas tanto ante componentes ruidosos como con fallas individuales.

«Hemos encontrado que nuestro robot de partículas mantiene aproximadamente la mitad de su velocidad a funcionamiento pleno, aún cuando el 20 por ciento de las partículas están muertas», dice Richa Batra, primer co-autor del artículo y estudiante de Doctorado de Lipson que dirigió el estudio de simulación.

El equipo ya está probando su sistema con una mayor cantidad de partículas por centímetro. Asimismo, se están explorando otras formas los robots de partícula, tales como microesferas vibrando.

«Creemos que algún día será posible hacer estos tipos de robots de millones de partículas diminutas, como microesferas que responden al sonido o la luz o el gradiente químico», dice Lipson. «Los robots podrían ser utilizados para hacer cosas como limpiar áreas o explorar terrenos o estructuras desconocidas.»

________________________________________
Fuente:
Materiales proporcionados por la Universidad de Columbia, Escuela de Ingeniería y Ciencias Aplicadas. Original escrito por Holly Evarts.
________________________________________
Referencia de la publicación:

Columbia University School of Engineering and Applied Science. «Robotic ‘gray goo’: Researchers create new kind of robot composed of many simple particles with no centralized control or single point of failure.» ScienceDaily. ScienceDaily, www.sciencedaily.com/releases/2019/03/190320141024.htm

Shuguang Li, Richa Batra, David Brown, Hyun-Dong Chang, Nikhil Ranganathan, Chuck Hoberman, Daniela Rus & Hod Lipson. Particle robotics based on statistical mechanics of loosely coupled components. Nature, 2019 DOI: 10.1038/s41586-019-1022-9
________________________________________



Crean piel electrónica resistente al agua, sensible y con capacidad de auto-reparación

Un equipo de científicos de la Universidad Nacional de Singapur (NUS) se inspiró en los invertebrados submarinos como las medusas para crear una piel electrónica con una funcionalidad similar.

Al igual que una medusa, la piel electrónica es transparente, estirable, sensible al tacto y se auto-repara en entornos acuáticos. Pero además es conductora de la electricidad, y podría usarse en todo, desde pantallas táctiles resistentes al agua hasta robots acuáticos blandos.

El profesor asistente Benjamin Tee y su equipo del Departamento de Ciencia e Ingeniería de Materiales de la Facultad de Ingeniería de la Universidad Nacional de Singapur desarrollaron el material, junto con colaboradores de la Universidad de Tsinghua y la Universidad de California en Riverside.

El equipo de ocho investigadores dedicó poco más de un año a desarrollar el material, y su invención se publicó por primera vez este año en la revista Nature Electronics.

Materiales auto-reparables, transparentes e impermeables para un amplio rango de usos

El profesor asistente Tee ha estado trabajando en pieles electrónicas durante muchos años, y fue parte del equipo que desarrolló los primeros sensores electrónicos de piel con auto-reparación en 2012.

Su experiencia en esta área de investigación lo llevó a identificar los obstáculos clave que aún no han superado las pieles electrónicas auto-reparables. «Uno de los desafíos con la mayoría de los materiales auto-reparables actuales es que no son transparentes y no funcionan de manera eficiente cuando están mojados», dijo. «Estos inconvenientes los hacen menos útiles para aplicaciones electrónicas, como las pantallas táctiles, que a menudo deben usarse en condiciones de clima con humedad extrema».

Continuó: «Con esta idea en mente, comenzamos a observar a las medusas; son transparentes y capaces de percibir en el ambiente acuático. Entonces, nos preguntamos cómo podríamos hacer un material artificial que pudiera imitar la naturaleza resistente al agua de las medusas y, sin embargo, fuese sensible al tacto».

Tuvieron éxito en este esfuerzo al crear un gel que consiste en un polímero a base de fluorocarbono con un líquido ionizado rico en flúor. Cuando se los combina, la red de polímeros interactúa con el líquido iónico a través de interacciones ión-dipolo altamente reversibles, lo que le permite auto-repararse.

Al elaborar las ventajas de esta configuración, el profesor Tee explicó: «La mayoría de los geles de polímeros conductores, como los hidrogeles, se hinchan al sumergirlos en agua o se secan con el tiempo en el aire, lo que hace que nuestro material sea diferente es que puede conservar su forma tanto en entornos húmedos como secos. Funciona bien en agua de mar e incluso en ambientes ácidos o alcalinos».


La próxima generación de robots blandos

La piel electrónica se crea imprimiendo el material nuevo dentro de circuitos electrónicos. Como es un material blando y estirable, sus propiedades eléctricas cambian cuando se toca, presiona o se tensa.

«Luego podemos medir este cambio y convertirlo en señales eléctricas legibles para crear una amplia gama de diferentes aplicaciones de sensores», agregó el profesor Tee.

«La capacidad de imprimir nuestro material en 3D también muestra potencial en la creación de tableros de circuitos totalmente transparentes que podrían usarse en aplicaciones robóticas. Esperamos que este material pueda usarse para desarrollar varias aplicaciones en tipos emergentes de robots blandos», agregó el profesor Tee, quien también pertenece al Departamento de Ingeniería Eléctrica e Informática de NUS, y el Instituto Biomédico para la Investigación y Tecnología de Salud Global (BIGHEART) en NUS.





Los robots blandos, y la electrónica blanda en general, buscan imitar los tejidos biológicos para hacerlos más compatibles mecánicamente con las interacciones hombre-máquina. Además de las aplicaciones de robots blandos convencionales, la tecnología impermeable de este nuevo material permite el diseño de robots anfibios y dispositivos electrónicos resistentes al agua.

Una ventaja adicional de esta piel electrónica autorreparable es el potencial que tiene para reducir la basura tecnológica. Tee explicó: «Cada año, se generan globalmente millones de toneladas de desechos electrónicos provenientes de teléfonos móviles, tabletas, etc. Esperamos crear un futuro en el que los dispositivos electrónicos hechos de materiales inteligentes puedan realizar acciones de reparación automática para reducir la cantidad de desechos electrónicos en el mundo».

Próximos pasos

El profesor Tee y su equipo continuarán su investigación y esperan explorar más posibilidades de este material en el futuro. Dijo: «Actualmente, estamos haciendo uso de las propiedades integrales del material para hacer nuevos dispositivos optoelectrónicos, que podrían utilizarse en muchas nuevas interfaces de comunicación hombre-máquina».

Fuente de la historia: ScienceDaily. Materiales proporcionados por la Universidad Nacional de Singapur. Referencia de la publicación: Yue Cao, Yu Jun Tan, Si Li, Wang Wei Lee, Hongchen Guo, Yongqing Cai, Chao Wang, Benjamin C.-K. Tee. Pieles electrónicas autocurables para ambientes acuáticos. Nature Electronics, 2019; 2 (2): 75 DOI: 10.1038 / s41928-019-0206-5

Artículos relacionados:
Dando sentido del tacto a los robots
Nuevos micro robots de tamaño celular podrían hacer viajes increíbles
Una prótesis que restaura la sensación de dónde está tu mano
Módulo de teclado sensible al tacto TTP229
Un pequeño robot blando con muchas patas administraría fármacos al cuerpo humano
Usando electricidad y agua, un nuevo tipo de motor puede poner microrobots en movimiento
FlexShapeGripper: el agarre de la lengua de un camaleón



Piernas robóticas que se basan en la evolución animal para aprender a caminar

Investigadores de la Universidad de Carolina del Sur (USC) han construido un robot que puede aprender solo a caminar. Inspirados por la forma de aprender de los humanos, y de los animales que han evolucionado para aprender esta habilidad a los pocos minutos de nacer, se espera que la investigación abra nuevas posibilidades en los campos de las prótesis dinámicas y los robots que aprenden sobre la marcha en entornos desconocidos.

La nueva extremidad robótica conectada a una máquina de cuatro patas (Crédito: Matthew Lin)

«Hoy en día, para que un robot esté listo para interactuar con el mundo se necesita el equivalente de meses o años de entrenamiento, pero queremos lograr el rápido aprendizaje y las adaptaciones que se ven en la naturaleza», dice Francisco J. Valero-Cuevas, un profesor de Ingeniería Biomédica.

En pos de este objetivo, Valero-Cuevas y sus colegas desarrollaron una pierna robótica accionada por tendones de tipo animal y controlada por algoritmos de Inteliencia Artificial bio-inspirados. Esto permite que el robot desarrolle la habilidad de caminar de manera similar a los humanos, por medio de lo que se conoce en los círculos de robótica como Motor Babbling (“babbling” es el balbuceo de los bebés que están probando su capacidad de hablar), que implica realizar movimientos exploratorios repetidos.

«Estos movimientos aleatorios de la pierna permiten al robot construir un mapa interno de su extremidad y sus interacciones con el medio ambiente», dice el estudiante de doctorado de ingeniería de la USC, Ali Marjaninejad, autor del estudio.

Los investigadores han desarrollado una extremidad robótica accionada por tendones de tipo animal y controlada por algoritmos de inteligencia artificial específicos.

Al aprender sobre su estructura y entorno, el miembro robótico puede desarrollar su propio andar personalizado y aprender una nueva tarea de caminar después de solo cinco minutos de pruebas puramente descoordinadas. A tal punto que puede recuperarse si tropieza al querer dar su próximo paso con seguridad en el suelo, aunque no esté programado para hacerlo. Los investigadores creen que este es el primer robot capaz de tal hazaña, y están entusiasmados con las posibilidades que abre el avance.
Como explican, los robots pueden programarse para realizar ciertas tareas en ciertos escenarios, pero no se pueden preparar para toda posibilidad. Este tipo de robots, por otro lado, que son capaces de desarrollar sus propios movimientos personalizados en respuesta a su entorno, podrán asumir una gama más amplia de tareas.

«Si se deja que estos robots aprendan de la experiencia relevante, finalmente encontrarán una solución que, una vez lograda, se utilizará y adaptará según sea necesario», dice Marjaninejad. «La solución puede no ser perfecta, pero se adoptará si es lo suficientemente buena para la situación. No todos necesitamos o deseamos, o podemos gastar tiempo y esfuerzo en ganar una medalla olímpica».





Las prótesis sensibles son un área en la que este tipo de tecnología podría tener un impacto, ya que ayuda a las personas con discapacidades, al permitirles extremidades más intuitivas, naturales y que se mejoran a sí mismas. La exploración espacial es otra, donde los robots podrían colocarse en planetas o lunas lejanos y usar sus capacidades de aprendizaje para ajustar su modo de andar y navegar por terreno desconocido.

«La capacidad de una especie para aprender y adaptar sus movimientos a medida que cambian sus cuerpos y ambientes ha sido, desde el principio, un poderoso impulsor de la evolución», dice Brian Cohn, también estudiante de doctorado y autor del estudio. «Nuestro trabajo constituye un paso hacia la capacitación de los robots para aprender y adaptarse de cada experiencia, tal como lo hacen los animales».

Artículos relacionados:
Creando robots que pueden ir a donde nosotros vamos
Walbi, el bípedo que aprende a caminar
Un guepardo robótico capaz de dar volteretas hacia atrás
Una prótesis que restaura la sensación de dónde está tu mano
Logran que los robots rastreen objetos en movimiento con una precisión sin precedentes
Un robot que procura moverse tan bien como una hormiga
Dando sentido del tacto a los robots
¿Por qué está resultando difícil construir robots para convivir y trabajar con nosotros en la vida real?

La investigación fue publicada en la revista Nature Machine Intelligence.
Fuente: Universidad del sur de California



Un guepardo robótico capaz de dar volteretas hacia atrás

El nuevo robot mini guepardo de MIT es elástico, liviano y pesa solo 9 kg

El nuevo robot mini guepardo de MIT es elástico y ligero, con un rango de movimiento que compite con un campeón de gimnasia. Este energético dispositivo de cuatro patas puede doblarse y balancear sus piernas, lo que le permite caminar con las patas en dirección hacia arriba o hacia abajo de su cuerpo. El robot también puede trotar en terrenos irregulares aproximadamente el doble de rápido que la velocidad de caminata de una persona promedio.

Con un peso de tan solo 9 kg -más liviano que algunos pavos de Navidad- el ágil cuadrúpedo no sufre los empujones: cuando es pateado en el suelo, el robot puede enderezarse rápidamente con un giro de sus codos, similar al kung-fu.

Quizás lo más impresionante es su capacidad para realizar un salto atrás de 360 grados desde una posición de pie. Los investigadores afirman que el mini guepardo está diseñado para ser «virtualmente indestructible», y que se recupera con poco daño, incluso si un salto hacia atrás termina mal.

En el caso de que se rompa una extremidad o un motor, el mini guepardo está diseñado considerando la modularidad: cada una de las patas del robot se alimenta de tres motores eléctricos idénticos y de bajo costo que los investigadores diseñaron con piezas listas para usar. Cada motor se puede cambiar fácilmente por uno nuevo.

«Podrías poner estas piezas juntas, casi como ladrillos de armar de plástico», dice el desarrollador líder, Benjamin Katz, un asociado técnico en el Departamento de Ingeniería Mecánica del MIT.


Los investigadores presentarán el diseño del mini guepardo en la Conferencia Internacional sobre Robótica y Automatización, en mayo. Actualmente están construyendo más de estas máquinas de cuatro patas, con la meta de tener un conjunto de 10, cada uno de los cuales esperan dar como préstamo a otros laboratorios.

«Una gran parte de la razón por la que construimos este robot es que tan fácil para experimentar y simplemente probar cosas locas, porque el robot es súper robusto y no se rompe fácilmente, y si se rompe, es fácil y no muy costoso arreglarlo», dice Katz, quien trabajó en el robot en el laboratorio de Sangbae Kim, profesor asociado de ingeniería mecánica.

Kim dice que el prestar mini guepardos a otros grupos de investigación les da a los ingenieros la oportunidad de probar algoritmos y maniobras novedosos en un robot altamente dinámico, al que de otra forma no tendrían acceso.

«Eventualmente, espero que podamos tener una carrera de perros robótica a través de una senda de obstáculos, donde cada equipo controle un mini guepardo con diferentes algoritmos, y podamos ver qué estrategia es más efectiva», dice Kim. «Así es como se acelera la investigación».

Cosas dinámicas

El mini guepardo es más que una versión en miniatura de su predecesor, el guepardo 3, un robot grande, pesado y formidable, que a menudo necesita ser estabilizado con correas para proteger sus costosas piezas diseñadas a medida.

«En Cheetah 3, todo está super integrado, así que si quieres cambiar algo, tienes que hacer un montón de rediseño», dice Katz. «Mientras que con el mini guepardo, si quisieras agregar otro brazo, podrías agregar tres o cuatro más de estos motores modulares».

Katz ideó el diseño del motor eléctrico al reconfigurar las piezas a motores pequeños, disponibles comercialmente, normalmente utilizados en aviones no tripulados y aviones controlados a distancia.

Cada uno de los 12 motores del robot es aproximadamente del tamaño de la tapa de un tarro a rosca, y consiste en un estator, o conjunto de bobinas que genera un campo magnético giratorio; un pequeño controlador que transmite la cantidad de corriente que debe producir el estator; un rotor, alineado con imanes, que gira con el campo del estator, produciendo un par para levantar o rotar una extremidad; una caja de engranajes que proporciona una reducción de engranajes de 6: 1, lo que permite que el rotor proporcione seis veces el par que normalmente tendría; y un sensor de posición que mide el ángulo y la orientación del motor y la extremidad asociada.




Cada pata está accionada por tres motores, para darle tres grados de libertad y una gran amplitud de movimiento. El diseño liviano, de alto torque y baja inercia, permite que el robot ejecute maniobras rápidas y dinámicas, y realice impactos de alta fuerza en el suelo sin romper las cajas de engranajes o las extremidades.

«La velocidad a la que puede cambiar las fuerzas sobre el terreno es realmente rápida», dice Katz. «Cuando está funcionando, sus pies están solo en el suelo durante unos 150 milisegundos a la vez, durante los cuales una computadora le dice que aumente la fuerza en el pie, luego la cambie para equilibrarlo y luego disminuya esa fuerza realmente rápido para levantar. Así que puede hacer cosas realmente dinámicas, como saltar en el aire con cada paso, o correr con dos pies en el suelo a la vez. La mayoría de los robots no son capaces de hacer esto, así que se mueven mucho más lento».

Volteretas

Los ingenieros probaron el mini guepardo con una serie de maniobras, analizando primero su capacidad de carrera en los pasillos del Laboratorio Pappalardo del MIT y en el terreno ligeramente irregular de Killian Court.

En ambos entornos, el cuadrúpedo se movió a aproximadamente 8 km por hora. Las articulaciones del robot son capaces de girar tres veces más rápido, con el doble de fuerza, y Katz estima que el robot podría funcionar casi el doble de rápido con un poco de ajuste.

El equipo escribió otro código de computadora para hacer que el se estire y se retuerza en varias configuraciones similares al yoga, mostrando su rango de movimiento y la capacidad de rotar sus extremidades y articulaciones mientras mantiene el equilibrio. También programaron el robot para recuperarse de una fuerza inesperada, como una patada lateral. Cuando los investigadores patearon el robot al suelo, se apagó automáticamente.

«Se supone que algo ha salido terriblemente mal, así que simplemente se apaga, y las piernas se desplazan libres», dice Katz.

Cuando recibe una señal para reiniciarse, el robot primero determina su orientación y luego realiza una maniobra preprogramada de agacharse o girar el codo para enderezarse en cuatro patas.

Katz y el coautor Jared Di Carlo, un estudiante universitario en el Departamento de Ingeniería Eléctrica y Ciencias de la Computación (EECS), se preguntaron si el robot podría realizar maniobras de mayor impacto. Inspirados por una clase que tomaron el año pasado, impartidos por el profesor Russ Tedrake de EECS, se dedicaron a programar el mini guepardo para realizar una voltereta hacia atrás.

«Pensamos que sería una buena prueba del rendimiento del robot, ya que requiere mucha potencia, torque, y hay enormes impactos al final de un giro», dice Katz.

El equipo escribió una «gigante optimización de la trayectoria, no lineal» que incorporaba la dinámica del robot y las capacidades del actuador, y especificó una trayectoria en la que el robot comenzaría en una cierta orientación del lado derecho hacia arriba y terminaría volteado 360 grados. El programa que desarrollaron luego resolvió todos los pares de torsión que debían aplicarse a cada junta, desde cada motor individual, y en cada período de tiempo entre el inicio y el final, para llevar a cabo el retroceso.

«La primera vez que lo probamos, funcionó milagrosamente», dice Katz.

«Esto es super emocionante», agrega Kim. «Imagina a Cheetah 3 haciendo una voltereta hacia atrás: se estrellaría y probablemente destruiría la máquina para correr. Podríamos hacer esto con el mini cheetah en un escritorio».



Creando robots que pueden ir a donde nosotros vamos

GIF Dan Saelinger

Los robots han caminado sobre piernas durante décadas. Los robots humanoides más avanzados de la actualidad pueden pisar sobre superficies planas e inclinadas, subir y bajar escaleras y avanzar por terrenos difíciles. Algunos incluso pueden saltar. Pero a pesar del progreso, los robots con piernas aún no pueden comenzar a igualar la agilidad, eficiencia y fuerza de los humanos y animales.

Los robots caminantes existentes consumen mucha energía y pasan demasiado tiempo en el taller. Con demasiada frecuencia fallan, caen y se rompen. Para que los ayudantes robóticos con los que hace tiempo soñamos se conviertan en realidad, estas máquinas tendrán que aprender a caminar como nosotros.

Debemos construir robots con piernas porque nuestro mundo está diseñado para piernas. Pasamos por espacios estrechos, nos movemos sobre obstáculos, subimos y bajamos escalones. Los robots con ruedas u orugas no pueden moverse fácilmente por los espacios que hemos optimizado para nuestros propios cuerpos.

De hecho, muchos humanoides tienen piernas similares a las nuestras, con caderas, rodillas, tobillos y pies. Pero las similitudes por lo general terminan ahí: si se comparan, por ejemplo, las fuerzas que estos robots ejercen en el suelo con las que ejerce un humano, se descubre que a menudo son bastante diferentes. La mayoría de los humanoides, descendientes de los primeros brazos robóticos industriales, controlan sus extremidades para seguir trayectorias específicas de la forma más precisa y rígida posible. Sin embargo, la locomoción con piernas no requiere tanto control de posición como control de fuerza, con mucha flexibilidad y elasticidad, conocidas en robótica como flexibilidad, como para permitir contactos inesperados.

Varios grupos de investigación han estado tratando de construir robots que sean menos rígidos y que puedan moverse de una manera más dinámica y humana. Tal vez el robot más famoso sea Atlas, de Boston Dynamics, un humanoide que puede correr en terrenos duros y blandos, saltar sobre troncos caídos e incluso retroceder. Pero nuevamente, cuando comparamos el movimiento de incluso los robots más sofisticados con lo que pueden lograr los animales, las máquinas se quedan cortas.

¿Qué nos falta? La tecnología no es el mayor obstáculo: los motores son lo suficientemente poderosos, los materiales son lo suficientemente fuertes, y las computadoras son lo suficientemente rápidas. Más bien, el factor limitante parece ser nuestra comprensión básica de cómo funciona la locomoción sobre patas.

Fotos: Dan Saelinger. Droides de la vida real: Agility Robotics diseñó sus robots con piernas Cassie [izquierda] y Digit para moverse de una manera más dinámica que los robots normales.

En el Dynamic Robotics Laboratory de la Universidad del Estado de Oregon, el autor dirige un grupo de investigadores que buscan identificar los principios subyacentes de la locomoción de las piernas y aplique sus descubrimientos a los robots. También es el cofundador y director de tecnología de Agility Robotics, una empresa con sede en Albany, Oregón, que está explorando los usos comerciales de la robótica con movilidad sobre piernas.

En 2017, presentaron Cassie, una plataforma bípeda que han vendido a varios grupos de investigación. Pronto tendrán un nuevo robot listo para salir al mundo: Digit, que tiene patas similares a las de Cassie, pero también cuenta con sensores de percepción y un par de brazos que utilizará para la estabilidad y, en el futuro, la manipulación.

Tanto por medio del laboratorio como de la compañía, están trabajando para lograr un futuro en el que los robots puedan ir a cualquier lugar donde vaya la gente. Se cree que los robots con piernas dinámicas algún día ayudarán a cuidar de las personas mayores y enfermas en sus hogares, ayudarán en los esfuerzos de salvamento en incendios y terremotos, y entregarán paquetes en las puertas de las casas.

Las piernas robóticas también permitirán exoesqueletos y extremidades protésicas motorizadas para dar más movilidad a las personas con discapacidades. Finalmente traerán los robots imaginados en la ciencia ficción a nuestras vidas diarias.

CLIC PARA VER VIDEO

Algunas aves corren mejor de lo que pueden volar, si es que pueden volar. Avestruces, pavos, gallinas y codornices no pueden volar como un halcón, pero son rápidas con sus patas. En colaboración con Monica Daley del Royal Veterinary College de la Universidad de Londres, el autor y sus colegas han pasado innumerables horas observando a las aves caminando y corriendo en el laboratorio. Quieren entender cómo es que estos animales se mueven de manera tan ágil y eficiente, ¡la mayoría de estas máquinas emplumadas son impulsadas solo por semillas!

En un experimento, una gallina de Guinea corre por una pista cuando y pisa un hoyo oculto por una hoja de papel de seda. El ave no sabía que iba a meterse en un bache a media pierna de profundidad; sin embargo, el animal no pierde un paso, su pierna se estira para ajustarse a la caída a medida que pasa el obstáculo. Lo que sucede aquí es bastante notable: el cerebro del ave no tiene que sentir ni reaccionar ante la perturbación porque sus patas pueden manejarse por sí mismas.

Esto ofrece una visión importante para los diseñadores de robots: si primero construyes tu robot y luego intentas programarlo para que sea ágil, es probable que estés condenado a fallar. Al igual que con las aves de Guinea, la agilidad de un robot se derivará en gran parte de las propiedades mecánicas inherentes de su cuerpo, o lo que los robotistas llaman dinámica pasiva. Y esto se ha descuidado en la mayoría de los proyectos de robots con patas. Al diseñar cuidadosamente la dinámica pasiva de un robot en paralelo con el control de software como un sistema integrado se aumentan las posibilidades de crear un robot que se aproxime al rendimiento de un animal.

Ahora, vale la pena señalar que, aunque uno se inspire en los animales, no replican la forma del pie de un pájaro o la disposición de músculos y huesos en una pierna humana. En su lugar, se desea capturar la física de la locomoción animal y extraer de ella un modelo matemático que se pueda entender, probar en simulaciones por computadora y luego implementarlo en robots reales. Debido a que están utilizando metal y componentes electrónicos en lugar de huesos y cerebros para construir estos robots, pueden parecer muy diferentes de un animal y al mismo tiempo tener la misma física.




Uno de los modelos matemáticos más simples consiste en una masa puntual (que representa la parte superior del cuerpo) unida a un par de resortes ideales, que representan las piernas. Este modelo, conocido como modelo de masa de resorte, es una simplificación, por supuesto: se asemeja a un dibujo de palotes y no tiene en cuenta que las piernas tienen articulaciones, o que los pies no tocan el suelo en puntos discretos. Aún así, el modelo de muelles de resortes puede producir resultados sorprendentes: en las simulaciones, puede generar casi todas las maneras de caminar y correr observadas en personas y animales.

Foto: Oregon State University. Primeros pasos: Las piernas de ATRIAS no se parecen a las de una persona, pero el robot fue la primera máquina en demostrar dinámicas de andar de forma humana.

Primeros pasos:

Para probar el modelo de masa de resorte en una máquina, el grupo en Oregon State, en colaboración con Hartmut Geyer de la Universidad Carnegie Mellon y Jessy Grizzle de la Universidad de Michigan, desarrolló ATRIAS, un robot bípedo cuyo nombre es un acrónimo que refleja la premisa principal: Supongamos que el robot es una esfera. La idea era que la dinámica pasiva del robot pudiera acercarse lo más posible a la reproducción de la masa puntual con patas elásticas.

Construyeron cada pata con varillas de fibra de carbono livianas, dispuestas en una estructura en forma de paralelogramo conocida como enlace de cuatro barras. Esta estructura minimiza la masa de las piernas y su inercia asociada, aproximándose al modelo de masa de resorte. También equiparon la parte superior de las piernas con resortes de fibra de vidrio, que encarnan físicamente la parte de «resorte» del modelo, manejando los impactos en el suelo y almacenando energía mecánica.

Al principio, ATRIAS apenas podía sostenerse, y se lo sostuvo con una atadura por arriba de él. Pero a medida que refinaron su controlador, que hacía un seguimiento de la velocidad y la inclinación del cuerpo, el robot dio sus primeros pasos y pronto estaba caminando por el laboratorio. A continuación ATRIAS aprendió a recuperarse de las perturbaciones, que en un experimento consistió en que los alumnos le lanzaran pelotas. También llevaron a ATRIAS al campo de fútbol de la universidad, lo aceleraron a una velocidad máxima de 7,6 kilómetros por hora y luego, por supuesto, lo detuvieron rápidamente en la zona final.

CLIC PARA VER VIDEO

Para comprender mejor cómo lo estaba haciendo el robot, imagine que usted tiene los ojos vendados y camina sobre zancos con la parte superior del cuerpo envuelta en una alfombra, de modo que no puede usar los brazos para equilibrarse. Todo lo que se puede hacer es seguir caminando, y eso es lo que hizo ATRIAS. Incluso fue capaz de manejarse ante obstáculos, como una pila de madera contrachapada colocada en su camino.

Si bien era importante la agilidad, también era fundamental que ATRIAS fuera económico en consumo de energía. Confirmaron que lo era al medir un parámetro que se conoce como costo de transporte (COT). Se define como la relación entre el consumo de energía y peso por velocidad, y se usa para comparar la eficiencia energética en cómo se mueven los animales y las máquinas. Cuanto menor sea el COT, mejor. Una persona que camina, por ejemplo, tiene un COT de 0,2, mientras que los robots humanoides convencionales tienen valores mucho más altos, entre 2 y 3, según algunas estimaciones [PDF]. Los experimentos mostraron que ATRIAS, con su manera de caminar, tenía un COT de 1,13 [PDF], demostrando beneficios de eficiencia de robots dinámicos [PDF]. De hecho, unas cuantas baterías pequeñas de polímero de litio, del tipo que se usa en los automóviles controlados por radio, podrían mantener el funcionamiento de ATRIAS durante aproximadamente una hora.

También midieron las fuerzas [PDF] que el robot ejercía en el suelo. Colocaron ATRIAS, que pesa 72,5 kilogramos (aproximadamente lo mismo que una persona) en una placa de fuerza, un instrumento que se usa a menudo en medicina deportiva para evaluar la marcha de una persona al medir las fuerzas de reacción contra el suelo. Mientras el robot caminaba, grabaron los datos de fuerza aplicada. Luego reemplazaron a ATRIAS por uno de los alumnos y registraron sus pasos. Cuando graficaron las fuerzas de reacción del terreno a lo largo del tiempo, los dos conjuntos de datos tenían exactamente la misma forma. Por lo que se sabe hasta el momento, es la implementación robótica más realista de la dinámica de la marcha humana que se haya realizado.

Los resultados confirmaron que un simple sistema accionado por masa de resorte es algo que se puede construir en un robot; habilitando muchos de los rasgos buscados, tales como eficiencia, robustez y agilidad; y llegar al núcleo de lo que es la locomoción bípeda. Ya era hora de que construyeran el siguiente robot.

Foto: Dan Saelinger. Caminante dinámico: Para moverse con agilidad por un terreno complejo, Cassie usa cinco motores y dos resortes en cada pierna.


Y establecieron una vara elevada: querían que Cassie pudiera correr a través de un bosque, capaz de manejarse en terrenos difíciles operando durante horas con una batería, sin correa de seguridad.

Cassie se basa en los mismos conceptos desarrollados para ATRIAS, pero decidieron darle un nuevo tipo de piernas. Usaron dos motores para alimentar la conexión de cuatro barras en cada tramo de ATRIAS. Esta disposición minimizó su masa, pero hubo una complicación: durante parte del ciclo de pasos, un motor actuaba como un freno del otro, lo que le costaba una energía significativa e innecesaria. Para Cassie, estudiaron configuraciones alternativas para las piernas [PDF] para eliminar ese efecto. El nuevo diseño permite que los motores sean más pequeños y, por lo tanto, hace que el robot sea incluso más eficiente que ATRIAS.

Es importante tener en cuenta que la configuración de la pierna de Cassie fue resultado de este análisis. El hecho de que la pata se asemeje a la de un avestruz u otro terópodo puede ser una señal de que están en el camino correcto, pero el objetivo nunca fue crear un robot que, con unas pocas plumas bien colocadas, pudiera encajar con una multitud de avestruces.

CLIC PARA VER VIDEO


Cada una de las piernas de Cassie tiene cinco ejes de movimiento, o grados de libertad en el lenguaje robótico, cada uno impulsado por un motor. Las caderas tienen tres grados de libertad, similares a las nuestras, permitiendo que la pierna gire en cualquier dirección. Otros dos motores potencian las articulaciones en la rodilla y el pie. Cassie tiene grados adicionales de libertad en su espinilla y tobillo; estos son pasivos, no controlados por motores, sino más bien unidos a resortes, que ayudan al robot a moverse a través de terrenos complejos que los humanoides de pies planos no pueden manejar.

Las nuevas piernas de Cassie requerían un controlador de bajo nivel más sofisticado que el de ATRIAS. Con ATRIAS, la extensión de una pierna se logró simplemente mediante la aplicación de pares iguales y opuestos con los dos motores. Con la pierna de Cassie, mover el pie en una dirección específica requiere calcular diferentes pares de torsión para cada motor. Para hacer eso, el controlador debe tener en cuenta la inercia de las patas, así como la dinámica de los motores y cajas de engranajes.

Gif: Dan Saelinger. Paso a paso: El controlador de Cassie usa posiciones planeadas en pasos y balanceo dinámico para permitir que el robot suba las escaleras.


Es cierto que el problema de control se volvió más complejo, pero este método permite un mejor rendimiento y una gama de comportamientos mucho más amplia. Cassie puede alcanzar una velocidad de marcha de 5 km/h usando uno de los controladores iniciales. El consumo de energía varía de 100 vatios (cuando está de pie) a aproximadamente 300 vatios (en marcha), y la batería de iones de litio permite aproximadamente 5 horas de funcionamiento continuo. Las nuevas piernas también le permiten a Cassie moverse de una manera que ATRIAS no podría. Y gracias a una articulación motorizada en el pie, puede colocarse en su lugar sin tener que mover sus pies constantemente como lo hace ATRIAS.

Cassie también pesa solo 31 kg, la mitad que ATRIAS. Es posible cargar dos Cassies en el baúl de un automóvil en menos de un minuto. Y es mucho más robusto: las partes de su cuerpo están hechas de aluminio y fibra de carbono, y una cubierta protectora hecha de cloruro de polivinilo acrílico termoformado, un plástico fuerte que lo protege de colisiones y caídas.

Cassie todavía no corre por los bosques. Pero lo han probado al aire libre, sin amarres de seguridad, y ha caminado sobre tierra, hierba y hojas, caminos desparejos. Ahora están aprendiendo cómo integrar comportamientos dinámicos con planificación de movimiento [PDF] , lo que le permite subir escaleras, por ejemplo. También están trabajando en otra característica que podría hacer que un robot como Cassie sea mucho más útil: brazos.

Foto: Dan Saelinger. Cuerpo a estrenar: Digit tiene patas similares a las de Cassie, pero también tiene un torso lleno de sensores y un par de brazos diseñados para ayudar con la movilidad y el equilibrio.


Digit es un descendiente directo de Cassie. Tiene piernas similares, pero agregaron un torso y un par de brazos. Los brazos están diseñados para ayudar con la movilidad y el equilibrio del robot, ya que giran en coordinación con la marcha. También permitirán que Digit se cuide a sí mismo al caer, y reorientará su cuerpo para volver a subir.

Digit tiene algo más que Cassie no tenía: la percepción integrada. Agregaron numerosos sensores al robot, incluido un LIDAR sobre el torso. Estos sensores ayudarán a recopilar datos para permitir que el robot navegue por un mundo lleno de obstáculos, como habitaciones desordenadas y escaleras, y confiar en la dinámica estable subyacente solo cuando maneje situaciones inesperadas y detecte errores.

Digit y los robots con patas que seguirán aún tienen un largo camino por recorrer. Pero sus diseñadores están convencidos de que cambiarán el mundo. Su impacto podría ser tan grande como el automóvil en términos de cambios en los estilos de vida e incluso patrones de tráfico y aspectos de los diseños de la ciudad, donde estos robots prometen transformar la logística y la entrega de paquetes.

En un futuro no muy lejano, a medida que los vehículos ganen autonomía, los fabricantes de automóviles y las compañías de viajes compartidos como Lyft y Uber poseerán grandes flotas de vehículos que transporten personas, con un tráfico máximo durante las horas pico, como hoy. Pero a altas horas de la noche y en medio del día, ¿qué harán estos vehículos automatizados? En lugar de simplemente estar inactivos, podrían transportar paquetes desde los almacenes automáticos a su hogar. Sin embargo, estos vehículos de entrega están limitados en la acera: sin un ser humano, llevar el paquete a la puerta de una casa es un gran desafío. Ahí es donde entran los robots con piernas. Viajando en estos vehículos, cubrirán esos últimos metros. Aunque las ruedas y las alas pueden cumplir algunos de estos roles, en un mundo diseñado para bípedos, ninguna plataforma de movilidad podría ser tan versátil como un robot bípedo.

Fotos: Dan Saelinger. Entrega especial: Digit está aprendiendo a caminar en diferentes tipos de terreno y también a subir escaleras, por lo que algún día puede entregar paquetes directamente a la puerta de su casa.


Los robots de entrega formarán parte de un sistema de logística cada vez más automatizado que va de los fabricantes y los distribuidores directamente a su puerta. Este sistema reducirá los costos de envío hasta que sea significativamente menos costoso recibir los artículos en su hogar que comprarlos en un almacén grande, bien iluminado, con calefacción, y accesible para personas. Se volverán superfluas las grandes tiendas que hoy venden lo que son, en esencia, productos básicos. La gente todavía disfrutará de las compras en la tienda de ciertos productos, por supuesto. Pero para los comestibles de la semana, los robots de entrega le ahorrarán tiempo y dinero.

La locomoción bípeda también ayudará a poner robots en nuestros hogares y negocios. Los robots que pueden moverse por las escaleras y los entornos abarrotados mientras interactúan de manera segura con los humanos a nivel de los ojos y a escala humana, nos permitirán envejecer con gracia en nuestros propios hogares. Ayudarán a llevar las cosas y servirán como dispositivos de telepresencia, permitiendo a los familiares y amigos usar el robot para hablar con las personas de forma remota y hacerles compañía.

Los robots con piernas también irán a donde es peligroso que vayan los humanos. Se lanzarán en paracaídas a los incendios forestales para recopilar datos en tiempo real, se apresurarán a entrar a edificios incendiados para buscar ocupantes, o ingresar a zonas de desastre, como la central nuclear de Fukushima Daiichi, para explorar áreas de difícil acceso. Llevarán a cabo inspecciones periódicas de los espacios internos de las represas hidroeléctricas y explorarán las minas abandonadas, para que no tengamos que hacerlo nosotros.

Se deben resolver muchos desafíos para llevarnos a ese futuro. Pero el autor está convencido de que la comunidad robótica puede hacer que esta tecnología sea práctica. Será un pequeño paso para un robot, un gran salto para la humanidad.

Este artículo es una adaptación al español del que aparece en la edición impresa de IEE Spectrum de marzo de 2019 como «Walk This Way».

Sobre el autor:

Jonathan Hurst es director de tecnología y cofundador de Agility Robotics, así como profesor asociado de robótica y profesor de la Facultad de Ingeniería Dean en Oregon State University. Él tiene un B.S. en ingeniería mecánica y un M.S. y Ph.D. en robótica, todo de la Universidad Carnegie Mellon. Su investigación universitaria se centra en la comprensión de las mejores prácticas de ciencia e ingeniería fundamentales para la locomoción bípeda. Agility Robotics está utilizando esta investigación para desarrollar aplicaciones comerciales para la movilidad con patas robóticas.