Archivo de la categoría: Componentes

Auxiliares para control y digitalización de señales analógicas

Muchas de las señales que ingresan a un sistema digital, que provienen del mundo real y que por eso en pocas ocasiones se pueden considerar «binarias» (digital «0 y 1», «Sí y No», «valor» o «no valor»), son en su mayoría lecturas analógicas.

Si bien los microcontroladores incluyen entradas para señales analógicas, a veces no alcanza la precisión de lectura que poseen, o no alcanza la cantidad de entradas disponibles, y para esto necesitamos elementos auxiliares que nos ayuden a direccionarlas y leerlas, como los que presento aquí.

Convertidor analógico a digital ADS1115

Para los microcontroladores sin convertidor analógico a digital o cuando se quiere un ADC de mayor precisión, el ADS1115 proporciona una precisión de 16 bits a 860 muestras/segundo sobre I2C. El chip se puede configurar como 4 canales de entrada de un solo extremo, o dos canales diferenciales. Como una buena ventaja, incluso incluye un amplificador de ganancia programable, hasta X16, para ayudar a aumentar las señales individuales / diferenciales más pequeñas al rango completo. El ADC puede funcionar de 2 V a 5 V de alimentación lógica, puede medir un amplio rango de señales y es súper fácil de usar. Es un gran convertidor de 16 bits de propósito general.

La interconexión se realiza a través de la interfaz I2C. La dirección se puede cambiar a una de cuatro opciones para que pueda tener hasta 4 ADS1115 conectados en un solo bus I2C de 2 hilos para 16 entradas de terminación simple.

Especificaciones técnicas

Amplio rango de alimentación: 2,0V a 5,5V
Consumo de corriente bajo: Modo continuo: solo 150μA
Modo de disparo único: apagado automático
Tasas de datos programables: 8 SPS a 860 SPS (SPS = senseos por segundo)
Referencia interna de baja tensión de deriva interna: Sí
Oscilador interno: Sí
PGA incorporado: Sí (PGA = Amplificador de Ganancia Programable)
INTERFAZ I2C: Direcciones seleccionables por pines
Número de entradas analógicas: 4 simples o 2 Diferenciales
Comparador programable
Direcciones I2C: direcciones de bits entre 0x48-0x4B, seleccionables con puentes
Dimensiones mecánicas: 26.0 mm (L) x 9.4 mm (W) x 2.2 mm (H)
Separación de los pines: estándar 2,54 mm / 0,1 pulgada

Compatible con:

Placas Arduino como UNO, MEGA2560, DUE, Leonardo, Pro-mini, Pro-Micro, Nano, etc.
Raspberry Pi
ESP32, ESP8266, NodeMCU, WeMOS,
Microcontroladores PIC32, STM8, STM32, AVR, ATMEGA

Documentos y descargas:

ADS1115 Hoja de datos
ADS1115 Librería Python
ADS1115 Librería Arduino
ADS1115 Tutorial (Módulo similar, en breve publicaré nuestro propio tutorial)

Circuito típico

Conexiones

Selector analógico bidireccional CD74HC4067

Selector analógico bidireccional (multiplexor / demultiplexor) de 16 canales. Funciona como direccionador de 16 entradas analógicas a 1 vía de salida, o como 1 entrada analógica a 16 vías de salida.

Opera con alimentación entre 1,2 a 6 V.

Controla voltajes analógicos dentro del rango entre cero y el voltaje de alimentación.

Al ser bidireccionales permiten que las señales analógicas controladas sean, indistintamente, entradas o salidas. Estos selectores tienen baja resistencia al estar en estado de conducción, y alta resistencia al estar cerrados.


Ejemplos

Múltiples señales analógicas dirigidas a una entrada del microcontrolador

Múltiples Led controlados desde un único pin digital del microcontrolador

Hoja de datos:

CD74HC4067: http://www.ti.com/lit/ds/symlink/cd74hc4067.pdf

Puente H: Placa controladora de motores L9110S

La placa L9110S está diseñada para que los microcontroladores o circuitos lógicos puedan controlar con sencillez motores de corriente continua.

Driver de motores L9110S

El circuito está diseñado en base al chip controlador L9110, fabricado en la clásica cápsula DIP8 o en un diseño SOP8 SMD y basado en transistores MOSFET.

Circuito integrado L9110S

La tensión de alimentación para los motores puede variar de 2,5 a 12 V.

Diagrama de conexión

Como se observa en el siguiente diagrama, el control con el cableado típico no requiere componentes adicionales.

Conexión básica

Las entradas se pueden conectar directamente al microcontrolador. Si se conectan a un circuito que tiene salidas OC (Open Colector, o Colector Abierto) se requiere una resistencia pull-up conectada a la alimentación de 5V. Si bien en la hoja de datos del chip indica que el valor adecuado es ?1 k?, el módulo en sí incluye en su circuito resistores de 10 k? conectados al voltaje de alimentación de la lógica, o Vcc.

El circuito tiene dos entradas: una que puesta en ALTO hará que el motor avance, y una que puesta en ALTO hará que retroceda. Si se desea que el motor esté detenido, ambas entradas deben estar en el mismo valor: las dos en estado BAJO (LOW), o ambas en estado alto (HIGH). La placa tiene dos salidas, con bornera, que se conectan directamente al motor.

Las entradas que no se conectan a un circuito son tomadas como nivel BAJO (L, o Low) sin que ingrese ruido. Con un nivel ALTO (H, o HIGH), la corriente en esa entrada será de alrededor de 1 mA. El nivel de tensión para que el chip detecte la entrada en estado lógico BAJO o L es como máximo de 0,7 V.

Típicamente, para el nivel ALTO o H, la tensión en el pin de entrada debe ser de alrededor de la mitad del valor de alimentación o más (hasta, como máximo, el valor de la tensión de alimentación).

La corriente del motor se puede mantener constantemente desde 0,75 hasta 0,8 A (750 a 800 mA), y el circuito soporta picos de 1,5 a 2 A.

La hoja de datos ofrece una lista de los valores lógicos de las entradas y salidas.

nuevo-5

Esta tabla se puede ampliar para situaciones no típicas. Si sólo hay una entrada en el nivel H y la otra está en nivel L, el motor gira. Pero si ambas entradas están en H, o ambas entradas están en L, las salidas están en un tercer estado, o “flotante” (ningún voltaje), y no ambas en 0 volt, o “L”, como se muestra en la tabla.

Las salidas están conectadas internamente a diodos que protegen al circuito de los pulsos de contracorriente.




El L9110 gestiona dinámicamente frecuencias de hasta 40 kHz, mientras que el tiempo de conmutación más breve para la regulación por ancho de pulso (PWM) es de alrededor de 15 uS.

Diagrama de conexiones

Conexiones

Diagrama eléctrico

Circuito Eléctrico

Ejemplo práctico para controlar un robot

Ejemplo práctico - Control de un Robot

Ejemplo de programa para Arduino: prueba de movimientos

L9110S como amplificador de sonido para su robot

El control de un motor no es la única aplicación posible. El circuito también se puede utilizar como un sustituto de amplificador de potencia para una salida de audio digital de un microcontrolador.

En lugar de conmutar corriente a través del parlante como se realiza habitualmente, con un transistor, este circuito proporciona una doble amplitud de los impulsos de salida y, por lo tanto, aporta una potencia significativamente mayor.

Para una fuente de alimentación de 5 V es conveniente conectar un altavoz con una impedancia de 8 ? (o superior), mientras que con una entrada de 3 voltios puede utilizarse un altavoz adaptado a un voltaje menor. Para controlar el altavoz es necesario utilizar dos salidas en las que el nivel H alternará en cada media onda de la frecuencia del sonido.

En la siguiente figura hay una conexión que es normal con una salida, y funciona bien de 5 Hz a aproximadamente 30 kHz. Es importante mantener la condición de salida del microcontrolador en un nivel H cuando no se emite sonido, de lo contrario circulará corriente constante por el parlante.

Amplificador

Artículos relacionados:
Uso de la placa L298N para motores de CC
Puente H: Placa controladora de motores L9110S
Guía rápida de placas de control de motores
Manejo de potencia para motores con el integrado L293D
Control de motores de CC por Ancho de Pulso (PWM)



Guía rápida de placas de control de motores

1. DRV8835: Controlador de dos motores. Plaqueta de 18 mm x 10 mm para control bidireccional de dos motores de CC con voltajes de 0 V a 11 V. Tecnología MOSFET. Puede manejar hasta 1,2 A continuos por canal y puede soportar picos de corriente de hasta 1,5 A por canal por unos segundos. Protección incorporada contra voltaje inverso, bajo voltaje, sobrecorriente y sobrecalentamiento.

DRV8835



2. Shield L293D: Placa montable sobre Arduino UNO. Dos interfaces para servos. Maneja 4 motores de CC o 2 motores paso a paso. Controla la velocidad y sentido de marcha de los motores de CC con una selección de velocidad de 8 bit. Provee 0,6 A por salida (con picos de corriente de hasta 1,2 A) con protección térmica, con voltajes desde 4,5V a 36V.

Shield Arduino L293D



3. PCA9685: Placa de control de 16 servos o LEDs controlada por I2C. Con sólo 2 pines se controlan 16 salidas de ancho de pulso regulado. Resolución: 12 bit. VoltaJe: CC 5-10V. Tamaño: 60 x 25 mm.

Control de Servos



4. A3967: Controlador de microstepping compatible con motores paso a paso de 4, 6 y 8 cables, con rangos de tensión de 7 V a 30 V. Cuanto mayor sea el voltaje, mayor será el par en altas velocidades. Dispone además de un potenciómetro para ajustar el control de corriente de 150 a 750 mA por fase.

EasyDriver v4.4



5. A4988: Modulo de manejo para impresoras 3D, CNC y control de motores paso a paso. Con DISIPADOR. Permite controlar el giro de 1 motor paso a paso bipolar controlando micropasos. Protección por sobre-temperatura, bajo voltaje y cortocircuito. Voltaje de operación 8 a 35 volts. Máxima corriente por bobina: 2 A.

A4988



6. HG7881: controla 4 motores de corriente continua, o dos motor paso a paso de 2 fases, 4 hilos. Basado en integrados de tecnología MOSFET. Voltaje: 2,5 a 12V. Máxima corriente de funcionamiento: 0,8 A. Tamaño: 49 mm x 36 mm

HG7881



7. L9110S dual: Doble puente H para control bidireccional de 2 motores de CC. Basado en integrados de tecnología MOSFET. Corriente: 800 mA por cada salida. Rango de voltaje: 2,5 a 12V. Medidas: 29 mm x 23 mm.

L9110S dual



8. L298N: Módulo doble puente H para manejo de motores CC, con disipador. Tecnología con transistores NPN/PNP. Voltaje 5 a 35 V. Corriente máxima hasta 2A por salida.

L298N

Artículos relacionados:
Uso de la placa L298N para motores de CC
Puente H: Placa controladora de motores L9110S
Guía rápida de placas de control de motores
Manejo de potencia para motores con el integrado L293D
Control de motores de CC por Ancho de Pulso (PWM)


Comparación entre placas Arduino

Comparación entre modelos de Arduino

Especificaciones de placas Arduino retiradas del mercado


Sensores reflectivos QTR para siguelíneas

¿Quién dice que la electrónica no es linda? Este lo que se ve en la imagen de abajo es un sensor por reflexión a utilizar en un robot sigue-líneas avanzado, para que pueda seguir líneas a alta velocidad…

Sensor QTR-8RCSensor QTR-8RC

Por ahora el robot didáctico utilizará con unos sensores más básicos que se llaman CNY70, porque el primer paso en el aprendizaje es hacer que los chicos entiendan bien el concepto. ¡Pero después vamos a hacer el robot que VUELE sobre las pistas!

Ejemplo: VIDEO

Sensor CNY70Sensor CNY70

Estos son sensores individuales para robots siguelíneas de la misma familia, cada uno equivalente al CNY70. El tamaño del sensor en sí es mucho más pequeño; en este caso, están montados sobre un módulo que ya contiene la electrónica necesaria para adaptar y conectar el sensor al microcontrolador.

Sensores QTR-1RCSensores QTR-1RC

Sensor QTR-1RC

Escala del sensor comparada con un fósforo

Los pequeños rectangulitos negros son un conjunto de emisor de infrarrojo y receptor, que emiten un haz contra el suelo y detectan el brillo (o capacidad reflectiva) que tiene éste. Utilizando esta medición y los algoritmos correspondientes en el programa de manejo, el robot puede desplazarse con precisión sobre una línea trazada en el suelo. Los sensores vienen en pares porque va uno de cada lado de la línea guía a seguir.

Sensores QTR-8RC

El sensor para siguelíneas de alta velocidad, en lugar de tener dos sensores (uno a cada lado de la línea) lleva una hilera de 8 (cuatro a cada lado). Esto permite que el robot siga la línea a gran velocidad y con un andar de regulación sobre la línea menos abrupto que cuando trabaja con dos únicos sensores.

Sensor QTR-8RCQTR-8RC

Sensor QTR-8RC / escala con un fósforoQTR-8RC comparado con fósforo

El resistor es para cambiar si se quiere una salida analógica o una salida de pulso (midiendo la longitud del pulso se sabe cuánto está reflejando el sensor, en el caso de que la salida sea analógica, hay que utilizar un convertidor A/D = analógico a digital).


La medición de longitud de pulsos es una opción recomendable, ya que se puede hacer por software o utilizando módulos internos del microcontrolador que son específicos para medir longitud de pulsos. Por esta razón los LEDs no están alimentados todo el tiempo; existe una línea que permite que el funcionamiento del sensor sea pulsado en lugar de poseer una alimentación constante. En la configuración con salida analógica, los LEDs podrían estar alimentados siempre (aunque esto produce un consumo mayor de energía de las baterías). Cuando el circuito está basado en pulsos RC, el funcionamiento debe ser sí o sí pulsado, para que la carga y descarga del capacitor a través del resistor produzca el pulso proporcional a la calidad del reflejo en el objeto inferior, la banda colocada sobre el piso que debe seguir el siguelíneas. No se obtendrían pulsos con una alimentación constante.

DetallesQTR-(RC
QTR-(RC

El conjunto de 8 sensores tiene una marca a lo largo de la cual es posible cortar sin dañar el circuito, lo que lo convierte en un conjunto de 6 sensores por un lado, y uno de dos por el otro.

Sensor QTR-8RCQTR-8RC

CircuitoCircuito

El sensor se instala en el frente del robot, como se observa en las fotografías que siguen con diversos modelos de robots. Obsérvese la escala, teniendo en cuenta que el sensor de reflexión QTR tiene sólo 7 cm de longitud y 12,5 mm de ancho.

Robots con sensores QTR-8RCRobot 1
Robot 2
Robot 3
Robot 4

Para más detalles se pueden leer los datos de los fabricantes.