Archivo de la categoría: Inteligencia Artificial

Chip de cómputo basado en luz funciona similar a las neuronas

¿Una tecnología que funciona como un cerebro? En estos tiempos de inteligencia artificial, esto ya no parece tan inverosímil; por ejemplo cuando un teléfono móvil puede reconocer caras o idiomas. Sin embargo, con aplicaciones más complejas, las computadoras aún se enfrentan rápidamente a sus propias limitaciones. Una de las razones de esto es que una computadora tradicionalmente tiene unidades separadas de memoria y procesador, cuya consecuencia es que todos los datos deben enviarse entre los dos. En este sentido, el cerebro humano está muy por delante incluso de las computadoras más modernas porque procesa y almacena información en el mismo lugar, en las sinapsis o conexiones entre neuronas, de las cuales hay trillones en el cerebro. Un equipo internacional de investigadores de las Universidades de Münster (Alemania), Oxford y Exeter (ambos del Reino Unido) han tenido éxito en el desarrollo de una pieza de hardware que podría abrir camino para crear computadoras que se parezcan al cerebro humano. Los científicos lograron producir un chip que contiene una red de neuronas artificiales que funciona con la luz y puede imitar el comportamiento de las neuronas y sus sinapsis.

Los investigadores pudieron demostrar que una red neurosináptica óptica es capaz de «aprender» la información y usarla como base para calcular y reconocer patrones, al igual que un cerebro. Como el sistema funciona solo con luz y no con electrones tradicionales, puede procesar datos muchas veces más rápido. «Este sistema fotónico integrado es un hito experimental», dice el profesor Wolfram Pernice de la Universidad de Münster y socio principal del estudio. «El abordaje podría usarse más adelante en muchos campos diferentes para evaluar patrones en grandes cantidades de datos, por ejemplo, en diagnósticos médicos». El estudio se publica en el último número de la revista «Nature».

La historia en detalle – financiación y método utilizado

La mayoría de los abordajes existentes relacionados con las llamadas redes neuromórficas se basan en la electrónica, mientras que los sistemas ópticos, en los que se utilizan fotones, es decir, partículas de luz, aún están en su infancia. El principio que los científicos alemanes y británicos han presentado ahora funciona de la siguiente manera: las guías de ondas ópticas que pueden transmitir luz y pueden fabricarse en microchips ópticos se han integrado con los llamados materiales de cambio de fase, que ya se encuentran en medios de almacenamiento como el DVD regrabable. Estos materiales de cambio de fase se caracterizan por el hecho de que cambian dramáticamente sus propiedades ópticas dependiendo de si son cristalinos, cuando sus átomos se organizan de manera regular, o amorfos, cuando sus átomos se organizan de manera irregular. Este cambio de fase puede ser activado por la luz si un láser calienta el material. «Debido a que el material reacciona con tanta fuerza y cambia sus propiedades dramáticamente, es muy adecuado para imitar las sinapsis y la transferencia de impulsos entre dos neuronas», dice el autor principal Johannes Feldmann, quien realizó muchos de los experimentos como parte de su tesis doctoral en la universidad de Munster.

En su estudio, los científicos lograron por primera vez fusionar muchos materiales de cambio de fase nanoestructurados en una red neurosináptica. Los investigadores desarrollaron un chip con cuatro neuronas artificiales y un total de 60 sinapsis. La estructura del chip, que consta de diferentes capas, se basó en la llamada tecnología multiplex de división de longitud de onda, que es un proceso en el que la luz se transmite a través de diferentes canales dentro del nanocircuito óptico.

Para probar en qué medida puede reconocer patrones el sistema, los investigadores lo «alimentaron» con información en forma de pulsos de luz, utilizando dos algoritmos diferentes de aprendizaje automático. En este proceso, un sistema artificial «aprende» de ejemplos y puede, en última instancia, generalizarlos. En el caso de los dos algoritmos utilizados, tanto en el llamado aprendizaje supervisado como en el no supervisado, la red artificial pudo, en última instancia, y sobre la base de determinados patrones de luz, reconocer un patrón que se estaba buscando, uno de los cuales era cuatro letras consecutivas.

«Nuestro sistema nos ha permitido dar un paso importante hacia la creación de hardware para computadoras que se comporta de manera similar a las neuronas y las sinapsis en el cerebro, y que también puede trabajar en tareas del mundo real», dice Wolfram Pernice. «Al trabajar con fotones en lugar de electrones, podemos aprovechar al máximo el potencial conocido de las tecnologías ópticas, no solo para transferir datos, como ha sido hasta ahora, sino también para procesar y almacenarlos en un solo lugar», agrega el coautor, Prof. Harish Bhaskaran, de la Universidad de Oxford.




Un ejemplo muy específico es que, con la ayuda de dicho hardware, se podrían identificar automáticamente las células cancerosas. Sin embargo, habrá que trabajar bastante para que estas aplicaciones se conviertan en realidad. Los investigadores necesitan aumentar la cantidad de neuronas artificiales y sinapsis, y aumentar la profundidad de las redes neuronales. Esto se puede hacer, por ejemplo, con chips ópticos fabricados con tecnología de silicio. «Este paso se debe tomar en el proyecto conjunto ‘Fun-COMP’ de la UE mediante el uso del procesamiento de fundición para la producción de nanochips», dice el coautor y líder del proyecto Fun-COMP, el profesor C. David Wright de la Universidad de Exeter.

Este trabajo de colaboración fue financiado por la DFG de Alemania, la EPSRC del Reino Unido y el ERC de la Comisión Europea, y los programas H2020 (el proyecto Fun-COMP).

________________________________________

• Fuente de la historia: Materiales proporcionados por la Universidad de Münster. Referencia de la publicación: J. Feldmann et al. “All-optical spiking neurosynaptic networks with self-learning capabilities” (Redes neurosinápticas totalmente ópticas con capacidades de autoaprendizaje). Nature, 2019 DOI: 10.1038 / s41586-019-1157-8. Universidad de Münster. «Step towards light-based, brain-like computing chip» (Paso hacia un chip de computación similar a un cerebro basado en la luz). ScienceDaily, 8 de mayo de 2019.



Logran que catéter robótico ingrese por sí solo al corazón palpitante de cerdo vivo

El sistema de senseo del dispositivo fue inspirado por la forma en que las cucarachas se mueven a lo largo de los túneles.

Operar dentro de un corazón que late es un procedimiento complejo y delicado que requiere cirujanos expertos. El personal médico generalmente utiliza joysticks de control y una combinación de rayos X o ultrasonido para guiar con cuidado los catéteres a través del cuerpo.

Ahora, por primera vez, un catéter robótico ha sido capaz de navegar de forma autónoma dentro de un corazón para ayudar a llevar a cabo un procedimiento particularmente complejo. El dispositivo, que se inspiró en la forma en que ciertos animales aprenden sobre su entorno, se utilizó para ayudar a los cirujanos a cerrar las hemorragias en los corazones de cinco cerdos vivos.

«Las ratas usan bigotes para palpar a lo largo de la pared, los humanos sienten su camino y las cucarachas usan sus antenas», dice Pierre Dupont en la Escuela de Medicina de Harvard, quien dirigió el nuevo estudio publicado en Science Robotics. «Del mismo modo, este dispositivo usa sensores táctiles para elabora dónde está, y dónde ir a continuación, basado en un mapa del corazón «.

El dispositivo tiene 8 mm de ancho, con una cámara y una luz LED en su extremo que funciona como un sensor óptico y táctil combinado. Se usó un algoritmo de aprendizaje automático que se entrenó en alrededor de 2000 imágenes de tejido cardíaco para guiarlo a medida que se movía. El sensor táctil palpa periódicamente el tejido del corazón mientras se mueve, lo que ayuda a saber dónde está y asegurándose de no dañar el tejido.




Durante el experimento, el catéter navegó a la ubicación correcta el 95% del tiempo de los 83 ensayos en cinco cerdos. Esta es una tasa de éxito similar a la de un clínico con experiencia, y el procedimiento no dejó hematomas ni daños en los tejidos, según el equipo de investigación. Una vez en posición, los cirujanos tomaron el control y llevaron a cabo el procedimiento para reparar la hemorragia. Aunque han estado disponibles catéteres robóticos durante algunos años, este es el primero que ha podido encontrar su camino sin ayuda humana.

La idea es que, un día, esa tecnología podría liberar a los cirujanos para concentrarse en otras tareas o ayudar al personal médico menos experimentado a realizar procedimientos más complejos. La tecnología podría ser reutilizada para su uso en humanos dentro de cinco años, dice Dupont.

Artículo original:
Technology Review
Science Robotics



Investigadores belgas muestran cómo esconderse de la vigilancia con cámaras de IA

El software de reconocimiento de imágenes con aprendizaje automático puede ser engañado con una impresión a color.

La tecnología de video controlada por Inteligencia Artificial (IA) se está volviendo ubicua, rastreando nuestras caras y cuerpos en comercios, oficinas y espacios públicos.

En algunos países, la tecnología constituye un nuevo y poderoso instrumento de vigilancia policial y gubernamental.

Afortunadamente, como algunos investigadores de la universidad belga KU Leuven han demostrado recientemente, a menudo es posible que alguien se esconda de un sistema de video con IA con la ayuda de una simple impresión en color.

¿Quien lo dijo?

Los investigadores demostraron que la imagen que diseñaron puede esconder a una persona completa de un sistema de visión computarizado controlado por IA. Lo demostraron en un popular sistema de reconocimiento de objetos de código abierto llamado YoLo v2.

Esconderse

El truco podría permitir que los delincuentes se escondan de las cámaras de seguridad, u ofrecer a los disidentes una manera de esquivar el escrutinio del gobierno. «Lo que nuestro trabajo demuestra es que es posible eludir los sistemas de vigilancia de cámaras con parches ‘adversarios’», dice Wiebe Van Ranst, uno de los autores.

Piérdete

Van Ranst dice que no debería ser demasiado difícil adaptar la orientación del diseño de los sistemas de videovigilancia estándar.

“En este momento también necesitamos saber qué detector está en uso. «Lo que nos gustaría hacer en el futuro es generar un parche que funcione con varios detectores al mismo tiempo», dijo a MIT Technology Review. «Si esto funciona, hay muchas posibilidades de que el parche también funcione en el detector que está en uso en el sistema de vigilancia».




Misión de tontos

El engaño demostrado por el equipo belga explota lo que se conoce como aprendizaje automático adversarial. La mayoría de la visión por computador se basa en entrenar una red neuronal (convolucional) para reconocer diferentes cosas al proporcionarle ejemplos y ajustar sus parámetros hasta que clasifique los objetos correctamente.

Al alimentar ejemplos en una red neuronal profunda entrenada y monitorear la salida, es posible inferir qué tipos de imágenes confunden o engañan al sistema.

Ojos en todas partes

El trabajo es importante porque cada vez se encuentra más IA en las cámaras y el software de vigilancia habitual.

Incluso se está utilizando para obviar la necesidad de una línea de pago en algunas comercios experimentales, incluidos los operados por Amazon.

En China, la tecnología está emergiendo como un nuevo y poderoso medio para atrapar delincuentes. Y, lo que es más preocupante, también se utiliza mundialmente para rastrear a ciertos grupos étnicos.

Artículo original: MIT Technology Review, 23 de abril de 2019

Artículos Relacionados:

Logran que los robots rastreen objetos en movimiento con una precisión sin precedentes

Dando a los vehículos autónomos una “visión eléctrica” más aguda

Robots: Visión estereoscópica en tiempo real por medio de una cámara única

Ver a través de los ojos de un robot ayuda a personas con grandes deficiencias motoras