Archivo de la categoría: Inteligencia Artificial

Un robot del MIT monitorea los bíceps para aprender a manipular cosas

Aprender a moverse: los investigadores del MIT han creado un robot que monitorea de cerca nuestros bíceps mientras levantamos y movemos las cosas. Pero no se limita a admirar nuestros músculos, la idea consiste en desarrollar un sistema capaz de colaborar con las personas de forma más efectiva.

Aprender a controlar sus músculos: el robot, bautizado como RoboRaise, monitorea los músculos de una persona a través de unos sensores electromiográficos a los que está conectada. El aprendizaje automático compara las señales captadas por esos sensores con una representación del movimiento del brazo que hace la persona. Con esta información, el robot aprende repetir esa acción.

Aprender a trabajar en equipo: la mayoría de los robots de trabajo son tan torpes y peligrosos que es necesario ponerlos a trabajar aislados de los humanos, pero existe un creciente interés en que los robots colaboren con los trabajadores humanos. Este concepto, conocido como cobot, utiliza los avances en sensores y en algoritmos informáticos para volverlos más seguros y más inteligentes.

A observar cuidadosamente: el enfoque de RoboRaise resulta fascinante, y muestra cómo, en teoría, los robots podrían captar señales mucho más sutiles sobre el comportamiento de una persona. Esto podría crear máquinas que se coordinen mejor con nuestras acciones e intenciones.


Las personas saben instintivamente cómo trabajar juntas cuando llega el momento de levantar algo para lo que son necesarias dos personas. Las personas coordinan sus movimientos y trabajan para asegurarse de que cada lado de lo que se está llevando se mantenga a la misma altura. Si bien las tareas de este tipo son naturales para un humano, para los robots no es nada natural.
 
Los robots tienen que estar entrenados para trabajar bien con un humano y, por lo general, eso significa enseñar comandos de voz al robot de manera similar a cómo funciona un asistente de voz como Siri. Los investigadores del MIT han desarrollado un robot que puede colaborar con humanos sin necesidad de usar comandos hablados. El sistema robótico puede coordinar movimientos al monitorear sus movimientos musculares.

El sistema del MIT se llama RoboRaise, y requiere que los sensores se apliquen a los bíceps y tríceps del usuario para controlar su actividad muscular. Cuando los algoritmos detectan cambios en el nivel del brazo de la persona junto con gestos discretos con las manos hacia arriba y hacia abajo, el usuario puede hacer movimientos más finos.




El equipo pudo usar su sistema para tareas relacionadas con recoger cosas y ensamblar componentes simulados de aviones. El equipo dice que cuando el usuario y el robot trabajaron en estas tareas, aquel pudo controlar el robot a unos centímetros de la altura deseada. El sistema fue más preciso cuando se utilizaron gestos, respondiendo correctamente a aproximadamente el 70% de todos ellos.

Uno de los estudiantes del proyecto dice que puede imaginar a personas usando RoboRaise para fabricar, construir y ayudar en la casa. La nueva tecnología se basa en la tecnología anterior desarrollada en MIT, que permite a los usuarios corregir errores del robot con ondas cerebrales y gestos con las manos.

El equipo quiere desarrollar un sistema de asistencia robótica en el que el robot se adapte a lo humano, no al revés. El usuario puede comenzar a usar el robot rápidamente con una calibración mínima después de que los sensores están en su lugar.

Relacionados:
Guante lleno de sensores aprende las señales del tacto humano
Logran que los robots rastreen objetos en movimiento con una precisión sin precedentes
Piernas robóticas que se basan en la evolución animal para aprender a caminar
Creando robots que pueden ir a donde nosotros vamos
Una prótesis que restaura la sensación de dónde está tu mano



Guante lleno de sensores aprende las señales del tacto humano

Científicos del Instituto Tecnológico de Massachusetts (MIT) presentaron ayer un estudio en el que demostraban cómo un guante de bajo costo, recubierto con una red de sensores, podría reconocer objetos por medio de la presión, y ser utilizado en prótesis o robots, entre otros.

Se trata del proyecto Scalable TActile Glove (STAG), del Laboratorio de Ciencias de la Computación e Inteligencia Artificial, que creó este dispositivo de bajo costo, equipado con unos 550 sensores diminutos en casi toda la mano puede transmitir información en tiempo real.

En detalle, el guante capta cambios de presión por medio de una red de fibras conductoras —conocida técnicamente como una Red Neural Convolucional—, que procesan los datos con un algoritmo de sus sensores y buscan una coincidencia con objetos específicos para identificarlos.

“La información táctil recogida se proyecta sobre la forma de una mano humana, para que podamos entender fácilmente el contexto espacial”, explicó el director de la investigación, Subramanian Sundaraman a los medios. Y añadió: “Se podría considerar que el guante es como una cámara deformable que mide espacialmente las presiones o las fuerzas, lo que no es muy distinto a lo que ocurre en el mundo natural”.

En un artículo publicado en Nature, los investigadores describen un conjunto de datos que compilaron utilizando el STAG con 26 objetos comunes, entre ellos una lata de refresco, tijeras, una pelota de tenis, cuchara, bolígrafo y taza. Usando el conjunto de datos, el sistema predijo las identidades de los objetos con una precisión de hasta el 76 por ciento.

El guante, que sólo cuesta US$10 dólares, también puede predecir los pesos correctos de la mayoría de los objetos dentro de unos 60 gramos.




STAG está laminado con un polímero eléctricamente conductor que cambia la resistencia a la presión aplicada. Los investigadores cosieron hilos conductores a través de orificios en la película de polímero conductor, desde la punta de los dedos hasta la base de la palma. Los hilos se superponen de una manera que los convierte en sensores de presión. Cuando alguien que usa el guante siente, levanta, sujeta y suelta un objeto, los sensores registran la presión en cada punto.

Los hilos se conectan desde el guante a un circuito externo que traduce los datos de presión en «mapas táctiles», que son esencialmente videos breves de puntos que crecen y se contraen en un gráfico de una mano. Los puntos representan la ubicación de los puntos de presión, y su tamaño representa la fuerza: cuanto más grande es el punto, mayor es la presión.

A partir de esos mapas, los investigadores compilaron un conjunto de datos de aproximadamente 135.000 cuadros de video de interacciones con 26 objetos. Esos marcos pueden ser utilizados por una red neuronal para predecir la identidad y el peso de los objetos, y proporcionar información sobre la comprensión humana.

Para identificar objetos, los investigadores diseñaron una red neuronal convolucional (CNN), que generalmente se usa para clasificar imágenes, para asociar patrones de presión específicos con objetos específicos. Pero el truco fue elegir marcos de diferentes tipos de agarres para obtener una imagen completa del objeto.

La idea era imitar la forma en que los humanos pueden sostener un objeto de diferentes maneras para reconocerlo, sin usar su vista. De manera similar, la red neuronal convolucional de los investigadores elige hasta ocho cuadros semi-aleatorios del video que representan las capturas más diferentes, por ejemplo, sosteniendo una taza desde la parte inferior, superior y del mango.

El sistema podría mejorar la comprensión del funcionamiento del tacto, y de esta manera cómo se controlan las manos; una información que para algunos investigadores podría utilizarse para incorporar sensores táctiles a miembros artificiales, o partes mecánicas, y así revolucionar el desarrollo de prótesis y manos robóticas.

La red nerviosa de los mamíferos, dicen algunos, es todo un prodigio. En ella miles de millones de sensores distribuidos por la piel envían mensajes a nuestro cerebro, discriminan qué es importante y qué no, siendo clave para nuestras experiencias e incluso para la supervivencia.

Artículos Relacionados:

Dando sentido del tacto a los robots
Una prótesis que restaura la sensación de dónde está tu mano
Ver a través de los ojos de un robot ayuda a personas con grandes deficiencias motoras
Crean piel electrónica resistente al agua, sensible y con capacidad de auto-reparación



Un sistema llamado ‘Neural Lander’ usa IA para aterrizar drones sin problemas

El nuevo sistema emplea una red neuronal profunda para superar el desafío de la turbulencia de efecto suelo

Aterrizar los drones multi-rotor sin problemas es difícil. Una compleja turbulencia es creada por el flujo de aire de cada rotor que rebota del suelo a medida que el suelo crece cada vez más cerca durante un descenso. Esta turbulencia no se comprende bien, ni es fácil de compensar, especialmente en los drones autónomos. Es por eso que a menudo el despegue y el aterrizaje son las dos partes más difíciles del vuelo de un avión no tripulado. Los drones normalmente se tambalean y avanzan con lentitud hasta el aterrizaje, cuando finalmente se corta la energía y se dejan caer la distancia restante al suelo.

En el Centro de Tecnologías y Sistemas Autónomos (CAST – Center for Autonomous Systems and Technologies) de Caltech, los expertos en inteligencia artificial se han unido a expertos en control para desarrollar un sistema que utiliza una red neuronal profunda para ayudar a los drones autónomos a «aprender» cómo aterrizar de forma más segura y rápida, mientras se consume menos energía. El sistema que han creado, denominado «Neural Lander», es un controlador basado en aprendizaje que rastrea la posición y la velocidad del avión no tripulado, y modifica su trayectoria de aterrizaje y la velocidad del rotor para lograr el aterrizaje más suave posible.

«Este proyecto tiene el potencial de ayudar a los drones a volar de manera más suave y segura, especialmente en presencia de ráfagas de viento impredecibles, y consumir menos energía de la batería, ya que los drones pueden aterrizar más rápidamente», dice Soon-Jo Chung, profesor de Aeronáutica de Bren, División de Ingeniería y Ciencias Aplicadas (EAS) e investigador científico en JPL, que Caltech administra para la NASA. El proyecto es una colaboración entre los expertos en inteligencia artificial (AI) de Chung y Caltech, Anima Anandkumar, profesora de informática y ciencias matemáticas, y Yisong Yue, profesora asistente de informática y ciencias matemáticas.

Un documento que describe el Neural Lander se presentó en la Conferencia Internacional sobre Robótica y Automatización del Instituto de Ingenieros Eléctricos y Electrónicos (IEEE). Los coautores principales del artículo son los estudiantes graduados de Caltech Guanya Shi, cuya investigación de doctorado es supervisada conjuntamente por Chung y Yue, así como Xichen Shi y Michael O’Connell, que son estudiantes de doctorado en el Grupo de Control y Robótica Aeroespacial de Chung.

Las redes neuronales profundas (DNN) son sistemas de IA que se inspiran en sistemas biológicos como el cerebro. La parte «profunda» del nombre se refiere al hecho de que las entradas de datos se mueven a través de múltiples capas, cada una de las cuales procesa la información entrante de una manera diferente para descubrir detalles cada vez más complejos. Los DNN son capaces de aprendizaje automático, lo que los hace ideales para tareas repetitivas.

 

Para asegurarse de que el drone vuele suavemente bajo la guía del DNN, el equipo empleó una técnica conocida como normalización espectral, que suaviza las salidas de la red neuronal para que no realice predicciones muy variadas a medida que cambian las entradas y condiciones. Las mejoras en el aterrizaje se midieron al examinar la desviación de una trayectoria idealizada en el espacio 3D. Se realizaron tres tipos de pruebas: un aterrizaje vertical recto; un arco descendente de aterrizaje; y el vuelo en el que el avión no tripulado roza una superficie que se corta, como en el borde de una mesa, donde el efecto de la turbulencia del suelo variaría considerablemente.

El nuevo sistema reduce el error vertical en un 100 por ciento, lo que permite aterrizajes controlados y reduce la deriva lateral en hasta un 90 por ciento. En sus experimentos, el nuevo sistema logra un aterrizaje real en lugar de quedarse atrapado a unos 10 a 15 centímetros por encima del suelo, como suelen hacer los controladores de vuelo convencionales no modificados. Además, durante la prueba el Neural Lander produjo una transición mucho más suave cuando el dron hizo la transición de deslizarse sobre la mesa para volar en el espacio libre más allá del borde.

«Con menos errores, el Neural Lander es capaz de un aterrizaje más rápido y suave, y de deslizarse suavemente sobre la superficie del suelo», dice Yue. El nuevo sistema se probó en el aeródromo de tres pisos de CAST, que puede simular una variedad casi ilimitada de condiciones de viento en el exterior. Inaugurado en 2018, CAST es una instalación de 10.000 pies cuadrados donde los investigadores de EAS, JPL y la División de Ciencias Geológicas y Planetarias de Caltech se unen para crear la próxima generación de sistemas autónomos, mientras avanzan los campos de investigación de drones, exploración autónoma, y sistemas bioinspirados.

«Este esfuerzo interdisciplinario trae expertos de los sistemas de aprendizaje automático y control. Apenas hemos comenzado a explorar las ricas conexiones entre las dos áreas», dice Anandkumar.

Además de sus obvias aplicaciones comerciales, Chung y sus colegas han presentado una patente sobre el nuevo sistema. Éste podría ser crucial para los proyectos que actualmente se están desarrollando en CAST, incluido un transporte médico autónomo que podría aterrizar en lugares de difícil acceso. (como un tráfico bloqueado). «La importancia de poder aterrizar de forma rápida y sin problemas cuando se transporta a una persona lesionada no se puede exagerar», dice Morteza Gharib, Profesor de Aeronáutica e Ingeniería Bioinspirada; director de CAST; y uno de los principales investigadores del proyecto de ambulancia aérea.

Translatotron, el primer traductor simultáneo

La tecnología, elemento indispensable para romper las barreras, también idiomáticas. La evolución de los servicios basados en Inteligencia Artificial supera nuevos desafíos. Varias décadas después de desarrollar los primeros «convertidores» de audio, Google ha sido capaz de desarrollar un software que puede traducir la voz humana -de un idioma- a otro directamente sin necesidad de realizar ninguna conversión a texto.

Su nombre, sin embargo, suena a película de ciencia-ficción; Translatotron. No oculta sus intenciones porque está concebido para mejorar la relación entre el humano y la máquina, pero, como extensión, mejorar las comunicaciones entre personas igualando así sus condiciones (y limitaciones) idiomáticas. Un sistema que, en un futuro, puede dar pie a traductores automáticos como si se tratase de un teléfono móvil y que supone un nuevo paso en la traducción simultánea.

Esta herramienta combina diferentes tecnologías ya desarrolladas que empiezan, además, a formar parte de la jungla electrónica en la que reside el usuario. Tradicionalmente, estos sistemas eran independientes. Ahora, al separar la conversación en tres escenarios se pueden combinar. Así, el funcionamiento de Translatotron se basa en un solo proceso: en lugar de dividirlo en distintas fases como sucede en los sistemas de traducción actuales, que se apoyan en mecanismos de síntesis de voz a texto: reconocimiento de voz automático que transcriben la voz de origen como texto, los sistemas de traducción automática que convierten el texto transcrito al idioma de destino y, por último, la capacidad de sintetizar texto y voz para generar audio. Es decir, una traducción simultánea y sin apenas intermediarios, aunque no es perfecto: cada uno de estos pasos va arrastrando pequeños errores.

Google va más allá; ahora ha ideado el mecanismo para traducir de manera automática y realizar una traducción de voz a voz, con resultados muy precisos e, incluso, intentar «imitar» el habla de la persona. «Este sistema evita dividir la traducción en etapas separadas, con lo que aporta algunas ventajas sobre otras soluciones, incluido una mayor velocidad y evitando errores de composición entre el reconocimiento y la traducción, lo que facilita la retención de la voz del hablante original después de la traducción y un mejor manejo de palabras que no necesitan ser traducidas, por ejemplo, nombres propios», señalan en un comunicado fuentes del gigante de internet.

El proyecto, todavía en fase de pruebas, se basa en una red de secuencia a secuencia que procesa el audio de origen en espectrogramas -desgloses detallados de frecuencias del audio- y lo trata como un código de entrada, generando otros nuevos modelos de audio con contenido traducido para, posteriormente, convertir en idioma de destino. La gran aportación es que este proceso retiene el carácter de la voz original, por lo que la traducción, al final, no se realiza de forma robótica y enlatada sino intentando conservar algunos detalles del timbre de la voz, su color, la cadena e, incluso, el tono de la frase original.

Así, puede añadirse un mecanismo adicional que aprende las características del habla de una persona y que las codifica para lograr mantener su tono para utilizarlo posteriormente en la sintetización de la traducción de voz. En todo el proceso, la Inteligencia Artificial de Google utiliza objetivos multitarea para predecir los movimientos de la fuente, al mismo tiempo que genera los espectogramas de la traducción.La compañía ha expuesto, además, algunos logros alcanzados por este ingenio a través de varios clips de audio.



Un chip de I.A. supera a los robots y drones más impresionantes

En una reciente y deslumbrante mañana en California (EE.UU.), la investigadora del MIT Vivienne Sze subió a un pequeño escenario para realizar la que quizá haya sido presentación más desconcertante de su carrera. Dominaba el tema a la perfección. Debía hablar sobre los chips que se desarrollan en su laboratorio y de cómo iban a acercar el poder de la inteligencia artificial (IA) a una multitud de dispositivos con una potencia limitada sin tener que depender de los enormes centros de datos donde se realizan la mayoría de los cálculos de IA. Pero, tanto lo que vio en la conferencia como el público que acudió la hicieron reflexionar.

Hablamos de MARS, una conferencia de élite, solo para invitados, en la que los robots pasean (o vuelan) por un resort de lujo, mezclándose con famosos científicos y autores de ciencia ficción. Solo unos pocos investigadores fueron invitados a dar charlas técnicas, y las sesiones tienden a ser tanto inspiradoras como esclarecedoras. El público estaba compuesto por unos 100 investigadores, directores ejecutivos y algunos de los empresarios más importantes del mundo. El maestro de ceremonias de MARS fue el fundador y presidente de Amazon, Jeff Bezos, que estaba sentado en la primera fila. «Se podría decir que era un público de muy alto nivel», recuerda Sze con una sonrisa.

Otros ponentes de MARS presentaron robots que cortan al estilo kárate, drones que aletean como si fueran grandes insectos extrañamente silenciosos, e incluso proyectos para crear colonias marcianas. Ante esta competencia, los chips de Sze podían parecer más modestos. A simple vista, no se distinguen de los chips que hay dentro de cualquier dispositivo electrónico. Sin embargo, sus microprocesadores eran indudablemente mucho más importantes que cualquier otra cosa que hubo en la conferencia.

Nuevas capacidades

Los nuevos diseños de chips, como los que se desarrollan en el laboratorio de Sze, pueden ser cruciales para el futuro progreso de la IA, y los drones y robots que se dejaron ver en MARS. Hasta ahora, el software de IA se ejecutaba principalmente en unidades de procesamiento gráfico (GPU, por sus siglas en inglés), pero los nuevos diseños especializados de hardware podrían lograr que los algoritmos de IA sean más potentes, lo que abriría el camino a unas nuevas aplicaciones. Los nuevos chips de inteligencia artificial podrían masificar los robots de almacén y permitir que los teléfonos inteligentes crean escenarios fotorrealistas de realidad aumentada.

Los diseños de los chips de Sze son muy eficientes y flexibles, algo crucial para un campo que evoluciona tan rápido como la IA (ver ¿Quién ganará la batalla de los chips si el sector de la IA no para de cambiar?). En concreto, están diseñados para exprimir aún más potencial de los algoritmos de aprendizaje profundo que ya han revolucionado el mundo. Este proceso incluso podría lograr que este tipo de programas evolucionen por sí solos. Sze detalla: «Dado que la ley de Moore se ha ralentizado, necesitamos un nuevo hardware».

Esta ley choca cada vez más con los límites físicos de los componentes de ingeniería a escala atómica. Y está despertando un creciente interés en arquitecturas alternativas y nuevos enfoques de computación.

Este interés ha llegado incluso al Gobierno de EE. UU., que además de mantener su liderazgo en el diseño de chips en general, confía en los microprocesadores especializados para arrebatarle a China el trono de la IA. De hecho, los propios chips de Sze se están creando gracias a fondos de un programa de DARPA destinado a ayudar a desarrollar nuevos diseños de chips de IA (ver Así es la estrategia de EE.UU. para quitarle a China el trono de la IA).

Pero el impulso en la innovación de la fabricación de chips procede principalmente del aprendizaje profundo, una técnica muy poderosa de enseñar a las máquinas a realizar tareas útiles. En vez de dar a un ordenador un conjunto de reglas a seguir, una máquina se programa a sí misma básicamente. Los datos de entrenamiento se introducen en una gran red neuronal artificial simulada, que luego se ajusta para que produzca el resultado deseado. Con suficiente entrenamiento, un sistema de aprendizaje profundo puede encontrar patrones sutiles y abstractos en los datos. La técnica se aplica a una creciente variedad de tareas prácticas, desde el reconocimiento facial en los teléfonos inteligentes hasta la predicción de enfermedades a partir de imágenes médicas.

La carrera de los chips de IA

El aprendizaje profundo no depende tanto de la ley de Moore. Las redes neuronales ejecutan muchos cálculos matemáticos en paralelo, un enfoque para el que los GPU de videojuegos resultan mucho más efectivos dado que realizan computación paralela para renderizar imágenes en 3D. Pero los microchips diseñados específicamente para el aprendizaje profundo deberían ser aún más potentes.

El potencial de las nuevas arquitecturas de chips para mejorar la inteligencia artificial ha impulsado la actividad empresarial a un nivel que la industria de los chips no ha visto en décadas (ver La nueva carrera de los chips de silicio se libra en el cuadrilátero de la inteligencia artificial y China da la vuelta al marcador de los chips gracias a la IA). Las grandes empresas tecnológicas que quieren aprovechar y comercializar la inteligencia artificial, como Google, Microsoft y (sí) Amazon, están trabajando en sus propios chips de aprendizaje profundo. Pero también hay muchas start-ups trabajando en este campo. De hecho, el analista de microchips en la empresa de analistas Linley Group Mike Delmer considera que «es imposible hacer un seguimiento de todas las compañías que están apareciendo en el espacio del chip de IA». Y añade: «No bromeo cuando digo que descubrimos un nuevo chip casi cada semana«.

La verdadera oportunidad, según Sze, no reside en construir los chips de aprendizaje profundo más poderosos. La eficiencia energética también es importante porque la IA también debe funcionar más allá de los grandes centros de datos, lo que significa que los microprocesadores deberían ser capaces de funcionar con la energía disponible en el dispositivo. Esto se conoce como operar «al límite».




«La IA estará en todas partes, así que es importante encontrar formas de aumentar la eficiencia energética«, afirma el vicepresidente del grupo de productos de inteligencia artificial de Intel, Naveen Rao. Por ejemplo, el hardware de Sze es más eficiente, en parte, porque reduce físicamente el atasco entre el lugar en el que almacenan los datos y aquel en el que se analizan, pero también porque utiliza esquemas inteligentes para reutilizar los datos. Antes de unirse al MIT, Sze fue pionera en este enfoque para mejorar la eficiencia de la compresión de vídeo en Texas Instruments.

En un campo que avanza tan rápido, como es el aprendizaje profundo, el desafío para aquellos que trabajan con chips de IA consiste en asegurarse de que sean lo suficientemente flexibles para adaptarse a cualquier aplicación. Es fácil diseñar un chip súper eficiente capaz de hacer solo una tarea, pero ese tipo de producto se volverá obsoleto rápidamente.

El chip de Sze se llama Eyeriss. Desarrollado en colaboración con el científico investigador de Nvidia y profesor del MIT, Joel Emer, fue probado junto con varios procesadores estándar para ver cómo manejaba diferentes algoritmos de aprendizaje profundo. Equilibrando la eficiencia con la flexibilidad, el rendimiento del nuevo chip alcanza resulta entre 10 e incluso 1.000 veces más eficiente que el hardware existente, según un artículo publicado el año pasado.

Foto: Los investigadores del MIT Sertac Karaman y Vivienne Sze desarrollaron el nuevo chip.

Los chips de IA más simples ya están generando un gran impacto. Los teléfonos inteligentes de gama alta ya incluyen chips optimizados para ejecutar algoritmos de aprendizaje profundo para el reconocimiento de imagen y voz. Los chips más eficientes podrían permitir que estos dispositivos ejecuten un código de IA más potente con mejores capacidades. Los coches autónomos también necesitan poderosos chips de IA, ya que la mayoría de los prototipos dependen actualmente de un montón de ordenadores dentro del maletero.

Rao sostiene que los chips del MIT parecen prometedores, pero son muchos los factores que determinarán si una nueva arquitectura de hardware tendrá éxito. Uno de los más importantes, según él, es el desarrollo de software que permita a los programadores ejecutar código en él. «Hacer algo útil para aquellos que lo elaboran es probablemente el mayor obstáculo para la adopción», explica.

De hecho, el laboratorio de Sze también explora formas de diseñar software para explotar mejor las propiedades de los chips informáticos existentes. Y este trabajo se extiende más allá del aprendizaje profundo. Junto con el investigador del Departamento de Aeronáutica y Astronáutica del MIT Sertac Karaman, Sze desarrolló un chip de bajo consumo llamado Navion que realiza mapas en 3D y navegación de manera increíblemente eficiente, lo que permite integrarlo en un pequeño dron. Para este esfuerzo fue crucial diseñar un chip capaz de explotar el comportamiento de los algoritmos de navegación y crear un algoritmo que puediera aprovechar al máximo este chip personalizado. Junto al desarrollo del aprendizaje profundo, Navion refleja la forma en la que el software y el hardware de IA empiezan a evolucionar en simbiosis.

Los chips de Sze quizás no son tan llamativos como un dron con alas, pero el hecho de que fueran presentados en MARS refleja lo importante que será su tecnología, y la innovación del silicio en general, para el futuro de la IA. Después de su presentación, Sze afirma que algunos de los otros ponentes expresaron su interés en conocer más. «La gente encontró muchos casos importantes de aplicación», concluye. En otras palabras, podemos esperar que en la próxima conferencia de MARS los robots y drones lleven dentro algo bastante más especial.

Artículos relacionados:

Un robot que procura moverse tan bien como una hormiga
Chips de potencia ultra baja ayudan a hacer robots pequeños más capaces
Chip de cómputo basado en luz funciona similar a las neuronas