El insecto palo robótico HECTOR da sus primeros pasos

Un equipo de investigadores de la Universidad de Bielefeld ha tenido éxito en enseñarle la forma de caminar al único robot de su tipo en el mundo. Sus primeros pasos fueron registrados en un video. El robot se llama HECTOR y su construcción se basa en las formas de un insecto palo (Phasmatodea)

Con un diseño inspirado en los insectos, HECTOR tiene juntas elásticas pasivas y un exoesqueleto ultraligero. Lo que lo hace único es que está equipado con un gran número de sensores y que funciona de acuerdo con un concepto inspirado en la biología, un control reactivo descentralizado: el Walknet. Para el 2017, el robot andante estará equipado con habilidades adicionales dentro de un importante proyecto en el Centro de Excelencia de Tecnología de Interacción Cognitiva (CITEC).

Dibujo de diseño de HECTOR

El robot andante ha sido construido por el grupo de investigación en biomecatrónica. En el futuro, HECTOR servirá como una plataforma para los biólogos y expertos en robótica para poner a prueba las hipótesis sobre la locomoción animal. Un aspecto importante será la fusión de grandes cantidades de datos de los sensores de manera que el robot pueda caminar de modo más autónomo que antes. Una cuestión clave más será una óptima coordinación de los movimientos en un robot con articulaciones elásticas.




“La forma en que actúa la elasticidad en las unidades de HECTOR es comparable a la forma en que los músculos actúan en los sistemas biológicos”, dice el profesor Dr. Axel Schneider. Él dirige el grupo de investigación biomecatrónica y coordina el proyecto CITEC junto con el Profesor Dr. Volker Dürr del Departamento de Cibernética Biológica de la Facultad de Biología. Schneider y su equipo desarrollaron sus propios actuadores elásticos. HECTOR tiene 18 de esos. Gracias a la elasticidad inspirada en la biología que poseen sus unidades, HECTOR puede adaptarse con flexibilidad a las propiedades de las superficies sobre las que camina.

“Sin embargo, la elasticidad por sí sola no es suficiente para que HECTOR pueda caminar a través de un entorno natural que contiene obstáculos”, dice Schneider. “El reto era desarrollar un sistema de control que se encargara de coordinar los movimientos de sus patas en entornos difíciles, también”.

El colega de Schneider Jan Paskarbeit fue responsable del desarrollo y la construcción del robot. Él también programó una versión virtual de HECTOR con el fin de poner a prueba enfoques de control experimental sin dañar el robot. “Todos los subsistemas tienen que comunicarse entre sí para que el robot camine sin ninguna dificultad”, dice Paskarbeit. “De lo contrario, por ejemplo, HECTOR podría tener demasiadas patas en el aire al mismo tiempo, volverse inestable y caerse. Por otra parte, las patas tienen que ser capaces de reaccionar a las colisiones contra obstáculos. Hemos Solucionado esto implementando un comportamiento reflejo para subir por encima de los objetos”, explica el investigador del CITEC.

En el Centro de Excelencia CITEC, ocho grupos de investigación se han unido durante tres años en un proyecto a gran escala para optimizar a HECTOR. Los científicos vienen de los campos de la informática, la biología, la física y la ingeniería.

En la actualidad, los investigadores están trabajando en el equipamiento de la sección frontal de HECTOR con sensores de largo alcance, como en una cabeza. Ya tienen un prototipo con dos cámaras laterales y dos antenas táctiles. Tanto el sistema visual como el táctil están inspirados en los de los insectos; sus espacios de funcionamiento y su resolución son similares a los de modelos animales.

Equipo de diseño de HECTOREquipo de trabajo

“Un gran reto ahora será encontrar una forma eficaz de integrar estos sensores de largo alcance con los sensores de posición y los sensores de las articulaciones. HECTOR es la plataforma ideal de investigación para hacer esto”, dice Volker Dürr.

A hexapod walker using a heterarchical architecture for action selection

Por otra parte, hasta la fecha Hector ha sido un sistema reactivo: Reacciona a los estímulos de su entorno; gracias al programa de software “Walknet” puede caminar con un paso de insecto; y gracias a otro programa llamado “Navinet” es capaz de encontrar el camino hacia cualquier objetivo distante. Pero Schillling y Cruse también han desarrollado un programa llamado “reaCog” que se activa cuando dos de los otros programas no son capaces de resolver un problema dado.

Este nuevo software permite al robot simular un “comportamiento imaginado” para resolver dicho problema: Héctor busca nuevas soluciones y evalúa si estas acciones tendrían sentido, en vez de completar automáticamente cualquier operación predeterminada. El hecho de ser capaz de imaginar acciones es una característica central de una forma simple de conciencia.

Autoconciencia

Pero en breve, además, Héctor demostrará cómo funciona la nueva arquitectura de software para él creada y que le proporcionará la “autoconciencia”. De momento, esta arquitectura solo ha sido probada en simulaciones informáticas.

Como explica Holk Cruse, “el ser humano posee conciencia reflexiva cuando no solo puede percibir lo que experimenta, sino que también tiene la capacidad de experimentar que está experimentando algo. Por tanto, la conciencia reflexiva existe si un sistema técnico o humano puede verse a sí mismo ‘desde fuera de sí mismo’, por así decirlo”.

Cruse y Schilling han demostrado como puede surgir conciencia reflexiva de un robot. “Con el nuevo software, Héctor puede observar su estado mental interno —en cierta medida, sus estados de ánimo— y dirigir sus acciones, usando esta información”, señala Schilling. Pero, además, estas facultades básicas estarán preparadas para que Héctor también sea capaz de evaluar el estado mental de otros. Así será “capaz de sentir las intenciones o expectativas de los demás, y actuar en consecuencia”, aseguran los investigadores.

Noticias relacionadas:






Deja un comentario